
Module A: Algebraic properites of linear maps

Section A.1

Definition A.1.1 A linear transformation (also known as a linear map) is a map between vector spaces
that preserves the vector space operations. More precisely, if V and W are vector spaces, a map T : V →W
is called a linear transformation if

1. T (v + w) = T (v) + T (w) for any v,w ∈ V .

2. T (cv) = cT (v) for any c ∈ R,v ∈ V .

In other words, a map is linear when vector space operations can be applied before or after the transformation
without affecting the result.

Definition A.1.2 Given a linear transformation T : V →W , V is called the domain of T and W is called
the co-domain of T .

v

domain R3

Linear transformation T : R3 → R2

T (v)

codomain R2

Example A.1.3 Let T : R3 → R2 be given by

T

xy
z

 =

[
x− z

3y

]

To show that T is linear, we must verify...

T

xy
z

+

uv
w

 = T

x + u
y + v
z + w

 =

[
(x + u)− (z + w)

3(y + v)

]

T

xy
z

+ T

uv
w

 =

[
x− z

3y

]
+

[
u− w

3v

]
=

[
(x + u)− (z + w)

3(y + v)

]
And also...

T

c

xy
z

 = T

cxcy
cz

 =

[
cx− cz

3cy

]
and cT

xy
z

 = c

[
x− z

3y

]
=

[
cx− cz

3cy

]

Therefore T is a linear transformation.
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Module A: Algebraic properites of linear maps

Example A.1.4 Let T : R2 → R4 be given by

T

([
x
y

])
=


x + y
x2

y + 3
y − 2x


To show that T is not linear, we only need to find one counterexample.

T

([
0
1

]
+

[
2
3

])
= T

([
2
4

])
=


6
4
7
0



T

([
0
1

])
+ T

([
2
3

])
=


1
0
4
−1

+


5
4
6
−5

 =


6
4
10
−6


Since the resulting vectors are different, T is a linear transformation.

Fact A.1.5 A map between Euclidean spaces T : Rn → Rm is linear exactly when every component of the
output is a linear combination of the variables of Rn.

For example, the following map is definitely linear because x− z and 3y are linear combinations of x, y, z:

T

xy
z

 =

[
x− z

3y

]
=

[
1x + 0y − 1z
0x + 3y + 0z

]

But this map is not linear because x2, y + 3, and y − 2x are not linear combinations (even though x + y is):

T

([
x
y

])
=


x + y
x2

y + 3
y − 2x


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Linear Algebra

Activity A.1.6 (∼5 min) Recall the following rules from calculus, where D : P → P is the derivative map
defined by D(f(x)) = f ′(x) for each polynomial f .

D(f + g) = f ′(x) + g′(x)

D(cf(x)) = cf ′(x)

What can we conclude from these rules?

a) P is not a vector space

b) D is a linear map

c) D is not a linear map

Activity A.1.7 (∼10 min) Let the polynomial maps S : P4 → P3 and T : P4 → P3 be defined by

S(f(x)) = 2f ′(x)− f ′′(x) T (f(x)) = f ′(x) + x3

Compute S(x4 +x), S(x4)+S(x), T (x4 +x), and T (x4)+T (x). Which of these maps is definitely not linear?

Fact A.1.8 If L : V → W is linear, then L(z) = L(0v) = 0L(v) = z where z is the additive identity of the
vector spaces V,W .

Put another way, an easy way to prove that a map like T (f(x)) = f ′(x) + x3 can’t be linear is because

T (0) =
d

dx
[0] + x3 = 0 + x3 = x3 6= 0.

Activity A.1.9 (∼15 min) Continue to consider S : P4 → P3 defined by

S(f(x)) = 2f ′(x)− f ′′(x)

Part 1: Verify that
S(f(x) + g(x)) = 2f ′(x) + 2g′(x)− f ′′(x)− g′′(x)

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.
Part 2: Verify that S(cf(x)) is equal to cS(f(x)) for all real numbers c and polynomials f . Is S linear?

Activity A.1.10 (∼20 min) Let the polynomial maps S : P → P and T : P → P be defined by

S(f(x)) = (f(x))2 T (f(x)) = 3xf(x2)

Part 1: Show that S(x + 1) 6= S(x) + S(1) to verify that S is not linear.
Part 2: Prove that T is linear by verifying that T (f(x)+g(x)) = T (f(x))+T (g(x)) and T (cf(x)) = cT (f(x)).

Observation A.1.11 Note that S in the previous activity is not linear, even though S(0) = (0)2 = 0. So
showing S(0) = 0 isn’t enough to prove a map is linear.

This is a similar situation to proving a subset is a subspace: if the subset doesn’t contain z, then the subset
isn’t a subspace. But if the subset contains z, you cannot conclude anything.
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