
Module S: Structure of vector spaces

Section S.3

Observation S.3.1 In the previous section, we learned that computing a basis for the subspace span{v1, . . . ,vm},
is as simple as removing the vectors corresponding to the non-pivot columns of RREF[v1 . . . vm].

For example, since

RREF

 1 2 3
0 −2 −2
−3 1 −2

 =

 1 0 1

0 1 1
0 0 0


the subspace W = span


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
−2

 has


 1

0
−3

 ,

 2
−2
1

 as a basis.

Activity S.3.2 (∼10 min) Let

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 and T =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1




Part 1: Find a basis for spanS.
Part 2: Find a basis for spanT .

Observation S.3.3 Even though we found different bases for them, spanS and spanT are exactly the same
subspace of R4, since

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1


 = T

Fact S.3.4 Any non-trivial vector space has infinitely-many different bases, but all the bases for a given
vector space are exactly the same size.

For example,

{e1, e2, e3} and


1

0
0

 ,

0
1
0

 ,

1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


are all valid bases for R3, and they all contain three vectors.
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Module S: Structure of vector spaces

Definition S.3.5 The dimension of a vector space is equal to the size of any basis for the vector space.

As you’d expect, Rn has dimension n. For example, R3 has dimension 3 because any basis for R3 such as

{e1, e2, e3} and


1

0
0

 ,

0
1
0

 ,

1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


contains exactly three vectors.

Activity S.3.6 (∼10 min) Find the dimension of each subspace of R4 by finding RREF for each corre-
sponding matrix.

span




2
3
0
−1

 ,


2
0
0
3

 ,


4
3
0
2

 ,


−3
0
1
3


 span




2
3
0
−1

 ,


2
0
0
3

 ,


3
13
7
16

 ,


−1
10
7
14

 ,


4
3
0
2




span




2
3
0
−1

 ,


4
3
0
2

 ,


−3
0
1
3

 ,


3
6
1
5


 span




5
3
0
−1

 ,


−2
1
0
3

 ,


4
5
1
3




Fact S.3.7 Every vector space with finite dimension, that is, every vector space V with a basis of the form
{v1,v2, . . . ,vn} is said to be isomorphic to a Euclidean space Rn, since there exists a natural correspon-
dance between vectors in V and vectors in Rn:

c1v1 + c2v2 + · · ·+ cnvn ↔


c1
c2
...
cn


Observation S.3.8 We’ve already been taking advantage of the previous fact by converting polynomials
and matrices into Euclidean vectors. Since P3 and M2,2 are both four-dimensional:

4x3 + 0x2 − 1x + 5↔


4
0
−1
5

↔ [
4 0
−1 5

]

Observation S.3.9 The space of polynomials P (of any degree) has the basis {1, x, x2, x3, . . . }, so it is a
natural example of an infinite-dimensional vector space.

Since P and other infinite-dimensional spaces cannot be treated as an isomorphic finite-dimensional Euclidean
space Rn, vectors in such spaces cannot be studied by converting them into Euclidean vectors. Fortunately,
most of the examples we will be interested in for this course will be finite-dimensional.
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Module S: Structure of vector spaces

Definition S.3.10 A homogeneous system of linear equations is one of the form:

a11x1 + a12x2 + . . .+ a1nxn = 0

a21x1 + a22x2 + . . .+ a2nxn = 0

...
...

...
...

am1x1 + am2x2 + . . .+ amnxn = 0

This system is equivalent to the vector equation:

x1v1 + · · ·+ xnvn = 0

and the augmented matrix: 
a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
...

...
. . .

...
...

am1 am2 · · · amn 0



Activity S.3.11 (∼5 min) Note that if

a1...
an

 and

b1...
bn

 are solutions to x1v1 + · · · + xnvn = 0 so is

a1 + b1
...

an + bn

, since

a1v1 + · · ·+ anvn = 0 and b1v1 + · · ·+ bnvn = 0

implies
(a1 + b1)v1 + · · ·+ (an + bn)vn = 0.

Similarly, if c ∈ R,

ca1...
can

 is a solution. Thus the solution set of a homogeneous system is...

a) A basis for Rn. b) A subspace of Rn. c) The empty set.
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Module S: Structure of vector spaces

Activity S.3.12 (∼10 min) Consider the homogeneous system of equations

x1 + 2x2 + x4 =0

2x1 + 4x2−x3− 2x4 =0

3x1 + 6x2−x3− x4 =0

Part 1: Find its solution set (a subspace of R4).
Part 2: Rewrite this solution space in the forma


?
?
?
?

+ b


?
?
?
?


∣∣∣∣∣∣∣∣ a, b ∈ R

 .

Fact S.3.13 The coefficients of the free variables in the solution set of a linear system always yield linearly
independent vectors.

Thus if a


4
1
0
0

+ b


−3
0
−2
1


∣∣∣∣∣∣∣∣ a, b ∈ R


is the solution space for a homoegeneous system, then


4
1
0
0

 ,


−3
0
−2
1




is a basis for the solution space.

Activity S.3.14 (∼10 min) Consider the homogeneous system of equations

x1− 3x2 + 2x3 =0

2x1− 6x2 + 4x3 + 3x4 =0

−2x1 + 6x2− 4x3− 4x4 =0

Find a basis for its solution space.
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Linear Algebra

Activity S.3.15 (∼5 min) Suppose W is a subspace of P8, and you know that it contains a linearly
independent set of 3 vectors. What can you conclude about W?

(a) The dimension of W is at most 3.

(b) The dimension of W is exactly 3.

(c) The dimension of W is at least 3.

Activity S.3.16 (∼5 min) Suppose W is a subspace of P8, and you know that it contains a spanning set
of 3 vectors. What can you conclude about W?

(a) The dimension of W is at most 3.

(b) The dimension of W is exactly 3.

(c) The dimension of W is at least 3.
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