Section V.0

Activity V.0.1 (~20 min) Consider each of the following vector properties. Label each property with \mathbb{R}^1 , \mathbb{R}^2 , and/or \mathbb{R}^3 if that property holds for Euclidean vectors/scalars $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of that dimension.

1. Addition associativity.

 $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}.$

2. Addition commutivity.

 $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$

3. Addition identity.

There exists some \mathbf{z} where $\mathbf{v} + \mathbf{z} = \mathbf{v}$.

4. Addition inverse.

There exists some $-\mathbf{v}$ where $\mathbf{v} + (-\mathbf{v}) = \mathbf{z}$.

5. Addition midpoint uniqueness.

There exists a unique \mathbf{m} where the distance from \mathbf{u} to \mathbf{m} equals the distance from \mathbf{m} to \mathbf{v} .

6. Scalar multiplication associativity.

 $a(b\mathbf{v}) = (ab)\mathbf{v}.$

7. Scalar multiplication identity.

 $1\mathbf{v} = \mathbf{v}.$

8. Scalar multiplication relativity.

There exists some scalar c where either $c\mathbf{v} = \mathbf{w}$ or $c\mathbf{w} = \mathbf{v}$.

9. Scalar distribution.

 $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}.$

10. Vector distribution.

 $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$

11. Orthogonality.

There exists a non-zero vector \mathbf{n} such that \mathbf{n} is orthogonal to both \mathbf{u} and \mathbf{v} .

12. Bidimensionality.

 $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$ for some value of a, b.

Definition V.0.2 A vector space V is any collection of mathematical objects with associated addition and scalar multiplication operations that satisfy the following properties. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ belong to V, and let a, b be scalar numbers.

- Addition associativity.
 u + (v + w) = (u + v) + w.
- Addition commutivity. u+v=v+u.
- Addition identity.

There exists some \mathbf{z} where $\mathbf{v} + \mathbf{z} = \mathbf{v}$.

- Addition inverse.
 - There exists some $-\mathbf{v}$ where $\mathbf{v} + (-\mathbf{v}) = \mathbf{z}$.

- Scalar multiplication associativity. $a(b\mathbf{v}) = (ab)\mathbf{v}.$
- Scalar multiplication identity.
 1v = v.
- Scalar distribution. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}.$
- Vector distribution. $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$

Any Euclidean vector space \mathbb{R}^n satisfies all eight requirements regardless of the value of n, but we will also study other types of vector spaces.