Module V: Vector Spaces

Section V.1

Remark V.1.1 Last time, we defined a vector space V to be any collection of mathematical objects with
associated addition and scalar multiplication operations that satisfy the following eight properties for all
u,v,w in V, and all scalars (i.e. real numbers) a, b.

e Addition associativity. e Scalar multiplication associativity.
ut+(v+w)=(u+v)+w. a(bv) = (ab)v.

e Addition commutivity. e Scalar multiplication identity.
ut+v=v+u lv=wv.

e Addition identity. e Scalar distribution.
There exists some z where v +z = v. a(u+v) =au+ av.

e Addition inverse. e Vector distribution.
There exists some —v where v + (—v) = z. (a+b)v=av+bv.

Remark V.1.2 The following sets are examples of vector spaces, with the usual/natural operations for
addition and scalar multiplication.

e R™: Euclidean vectors with n components.
e R*: Sequences of real numbers (vq,vs,...).

e M, »n: Matrices of real numbers with m rows and n columns.

C: Complex numbers.

P™: Polynomials of degree n or less.

‘P: Polynomials of any degree.

C(R): Real-valued continuous functions.

Activity V.1.3 (~20 min) Consider the set V = {(x,y) |y = e*} with operations defined by

(#,9) @ (2,0) = (z + 2, yw) cO (,y) = (cx,y%)

Part 1: Show that V satisfies the vector distributive property
(a+b)Oov=(a0V)B(DHOV)

by letting v = (z,y) and showing both sides simplify to the same expression.
Part 2: Show that V' contains an additive identity element by choosing z = (7, 7) such that v @ z =
(z,y)®(7,7)=v forany v = (z,y) € V.
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Module V: Vector Spaces

Remark V.1.4 It turns out V = {(x,y) |y = €} with operations defined by
(z,y) ® (z,w) = (z + 2, yw) cO (z,y) = (cz,y°)

satisifes all eight properties.

e Addition associativity. e Scalar multiplication associativity.
ud (vow)=(udv)dw. a® (bov)=(ab) Ov.

e Addition commutivity. e Scalar multiplication identity.
udbv=vou 1ov=wv.

e Addition identity. e Scalar distribution.
There exists some z where v® z = v. a®(udv)=(a@u)®(ad®v).

e Addition inverse. e Vector distribution.
There exists some —v where v @ (—v) = z. (a+b)Oov=_(a0V)B(DHOV).

Thus, V is a vector space.
Activity V.1.5 (~15 min) Let V = {(z,y) | z,y € R} have operations defined by
(@,9) ® (2,w) = (& +y + 2+ w,2° +27) cO(z,y) = (% y+c—1).

Part 1: Show that the scalar multiplication identity holds by simplifying 1 ® (z,y) to (z,y).

Part 2: Show that the addition identity property fails by showing that (0, —1) @&z # (0, —1) no matter how
z = (21, 22) is chosen.

Part 3: Can V be a vector space?

Definition V.1.6 A linear combination of a set of vectors {vy,va,...,v,,} is given by ¢1vy + cava +
-+ + ¢y vy for any choice of scalar multiples ¢i,¢a, ..., ¢m-
3 1 1
For example, we can say |0| is a linear combination of the vectors |—1| and |2]| since
5 2 1
3 1 1
Ol =2 -1 +1]2
5 2 1
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Linear Algebra

Definition V.1.7 The span of a set of vectors is the collection of all linear combinations of that set:

span{vi, va,..., Vi } = {c1vi + caVa + - 4 eV | ¢ € R}
For example:
1 1 1 1
span —11,12 =<a|—1|+b]|2||a,beR
2 1 2 1

1

Activity V.1.8 (~10 min) Consider span{
Part 1: Sketch 1 B], 3 {2}, [ } and —2 { ] in the zy plane.

Part 2: Sketch a representation of all the vectors belonging to span { B]} = {a B]

aER} in the xy

plane.

Activity V.1.9 (~10 min) Consider Span{ H ’ {_11} }

Part 1: Sketch the following linear combinations in the xy plane.
1 -1 1 -1 1 -1

3 R ES I R Y U

1 -1 1 [—1

o] el

Part 2: Sketch a representation of all the vectors belonging to span { 2] , {_11] } in the xy plane.

Activity V.1.10 (~5 min) Sketch a representation of all the vectors belonging to span { {_64] , {_3} } in
the xy plane.

Page 3



