
Module V: Vector Spaces

Section V.1

Remark V.1.1 Last time, we defined a vector space V to be any collection of mathematical objects with
associated addition and scalar multiplication operations that satisfy the following eight properties for all
u,v,w in V , and all scalars (i.e. real numbers) a, b.

• Addition associativity.

u + (v + w) = (u + v) + w.

• Addition commutivity.

u + v = v + u.

• Addition identity.

There exists some z where v + z = v.

• Addition inverse.

There exists some −v where v + (−v) = z.

• Scalar multiplication associativity.

a(bv) = (ab)v.

• Scalar multiplication identity.

1v = v.

• Scalar distribution.

a(u + v) = au + av.

• Vector distribution.

(a + b)v = av + bv.

Remark V.1.2 The following sets are examples of vector spaces, with the usual/natural operations for
addition and scalar multiplication.

• Rn: Euclidean vectors with n components.

• R∞: Sequences of real numbers (v1, v2, . . . ).

• Mm,n: Matrices of real numbers with m rows and n columns.

• C: Complex numbers.

• Pn: Polynomials of degree n or less.

• P: Polynomials of any degree.

• C(R): Real-valued continuous functions.

Activity V.1.3 (∼20 min) Consider the set V = {(x, y) | y = ex} with operations defined by

(x, y)⊕ (z, w) = (x + z, yw) c� (x, y) = (cx, yc)

Part 1: Show that V satisfies the vector distributive property

(a + b)� v = (a� v)⊕ (b� v)

by letting v = (x, y) and showing both sides simplify to the same expression.
Part 2: Show that V contains an additive identity element by choosing z = ( ? , ? ) such that v ⊕ z =
(x, y)⊕ ( ? , ? ) = v for any v = (x, y) ∈ V .
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Remark V.1.4 It turns out V = {(x, y) | y = ex} with operations defined by

(x, y)⊕ (z, w) = (x + z, yw) c� (x, y) = (cx, yc)

satisifes all eight properties.

• Addition associativity.

u⊕ (v ⊕w) = (u⊕ v)⊕w.

• Addition commutivity.

u⊕ v = v ⊕ u.

• Addition identity.

There exists some z where v ⊕ z = v.

• Addition inverse.

There exists some −v where v ⊕ (−v) = z.

• Scalar multiplication associativity.

a� (b� v) = (ab)� v.

• Scalar multiplication identity.

1� v = v.

• Scalar distribution.

a� (u⊕ v) = (a� u)⊕ (a� v).

• Vector distribution.

(a + b)� v = (a� v)⊕ (b� v).

Thus, V is a vector space.

Activity V.1.5 (∼15 min) Let V = {(x, y) |x, y ∈ R} have operations defined by

(x, y)⊕ (z, w) = (x + y + z + w, x2 + z2) c� (x, y) = (xc, y + c− 1).

Part 1: Show that the scalar multiplication identity holds by simplifying 1� (x, y) to (x, y).
Part 2: Show that the addition identity property fails by showing that (0,−1)⊕ z 6= (0,−1) no matter how
z = (z1, z2) is chosen.
Part 3: Can V be a vector space?

Definition V.1.6 A linear combination of a set of vectors {v1,v2, . . . ,vm} is given by c1v1 + c2v2 +
· · ·+ cmvm for any choice of scalar multiples c1, c2, . . . , cm.

For example, we can say

3
0
5

 is a linear combination of the vectors

 1
−1
2

 and

1
2
1

 since

3
0
5

 = 2

 1
−1
2

+ 1

1
2
1
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Linear Algebra

Definition V.1.7 The span of a set of vectors is the collection of all linear combinations of that set:

span{v1,v2, . . . ,vm} = {c1v1 + c2v2 + · · ·+ cmvm | ci ∈ R} .

For example:

span


 1
−1
2

 ,

1
2
1

 =

a

 1
−1
2

+ b

1
2
1

 ∣∣∣∣∣∣ a, b ∈ R


Activity V.1.8 (∼10 min) Consider span

{[
1
2

]}
.

Part 1: Sketch 1

[
1
2

]
, 3

[
1
2

]
, 0

[
1
2

]
, and −2

[
1
2

]
in the xy plane.

Part 2: Sketch a representation of all the vectors belonging to span

{[
1
2

]}
=

{
a

[
1
2

] ∣∣∣∣ a ∈ R
}

in the xy

plane.

Activity V.1.9 (∼10 min) Consider span

{[
1
2

]
,

[
−1
1

]}
.

Part 1: Sketch the following linear combinations in the xy plane.

1

[
1
2

]
+ 0

[
−1
1

]
0

[
1
2

]
+ 1

[
−1
1

]
1

[
1
2

]
+ 1

[
−1
1

]

−2

[
1
2

]
+ 1

[
−1
1

]
− 1

[
1
2

]
+−2

[
−1
1

]

Part 2: Sketch a representation of all the vectors belonging to span

{[
1
2

]
,

[
−1
1

]}
in the xy plane.

Activity V.1.10 (∼5 min) Sketch a representation of all the vectors belonging to span

{[
6
−4

]
,

[
−3
2

]}
in

the xy plane.
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