Section V.1

Remark V.1.1 Last time, we defined a **vector space** V to be any collection of mathematical objects with associated addition and scalar multiplication operations that satisfy the following eight properties for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V, and all scalars (i.e. real numbers) a, b.

• Addition associativity. • Scalar multiplication associativity. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}.$ $a(b\mathbf{v}) = (ab)\mathbf{v}.$ • Addition commutivity. • Scalar multiplication identity. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$ $1\mathbf{v} = \mathbf{v}.$ • Addition identity. • Scalar distribution. There exists some \mathbf{z} where $\mathbf{v} + \mathbf{z} = \mathbf{v}$. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}.$ • Addition inverse. • Vector distribution. There exists some $-\mathbf{v}$ where $\mathbf{v} + (-\mathbf{v}) = \mathbf{z}$. $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$

Remark V.1.2 The following sets are examples of vector spaces, with the usual/natural operations for addition and scalar multiplication.

- \mathbb{R}^n : Euclidean vectors with n components.
- \mathbb{R}^{∞} : Sequences of real numbers (v_1, v_2, \dots) .
- $M_{m,n}$: Matrices of real numbers with m rows and n columns.
- $\bullet~\mathbb{C}:$ Complex numbers.
- \mathcal{P}^n : Polynomials of degree n or less.
- \mathcal{P} : Polynomials of any degree.
- $C(\mathbb{R})$: Real-valued continuous functions.

Activity V.1.3 (~20 min) Consider the set $V = \{(x, y) | y = e^x\}$ with operations defined by

$$(x,y) \oplus (z,w) = (x+z,yw) \qquad c \odot (x,y) = (cx,y^c)$$

Part 1: Show that V satisfies the vector distributive property

$$(a+b)\odot \mathbf{v} = (a\odot \mathbf{v})\oplus (b\odot \mathbf{v})$$

by letting $\mathbf{v} = (x, y)$ and showing both sides simplify to the same expression. *Part 2:* Show that V contains an additive identity element by choosing $\mathbf{z} = (?, ?)$ such that $\mathbf{v} \oplus \mathbf{z} = (x, y) \oplus (?, ?) = \mathbf{v}$ for any $\mathbf{v} = (x, y) \in V$. **Remark V.1.4** It turns out $V = \{(x, y) | y = e^x\}$ with operations defined by

 $(x,y) \oplus (z,w) = (x+z,yw)$ $c \odot (x,y) = (cx,y^c)$

satisifies all eight properties.

- Addition associativity.
 u ⊕ (v ⊕ w) = (u ⊕ v) ⊕ w.
- Addition commutivity. $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}.$
- Addition identity. There exists some \mathbf{z} where $\mathbf{v} \oplus \mathbf{z} = \mathbf{v}$.
- Addition inverse.
 - There exists some $-\mathbf{v}$ where $\mathbf{v} \oplus (-\mathbf{v}) = \mathbf{z}$.

- Scalar multiplication associativity.
 a ⊙ (b ⊙ v) = (ab) ⊙ v.
- Scalar multiplication identity. $1 \odot \mathbf{v} = \mathbf{v}.$
- Scalar distribution. $a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v}).$
- Vector distribution.
 (a + b) ⊙ v = (a ⊙ v) ⊕ (b ⊙ v).

Thus, V is a vector space.

Activity V.1.5 (~15 min) Let $V = \{(x, y) | x, y \in \mathbb{R}\}$ have operations defined by

$$(x,y) \oplus (z,w) = (x+y+z+w, x^2+z^2)$$
 $c \odot (x,y) = (x^c, y+c-1).$

Part 1: Show that the scalar multiplication identity holds by simplifying $1 \odot (x, y)$ to (x, y). *Part 2:* Show that the addition identity property fails by showing that $(0, -1) \oplus \mathbf{z} \neq (0, -1)$ no matter how $\mathbf{z} = (z_1, z_2)$ is chosen.

Part 3: Can V be a vector space?

Definition V.1.6 A linear combination of a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m\}$ is given by $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_m\mathbf{v}_m$ for any choice of scalar multiples c_1, c_2, \ldots, c_m .

For example, we can say
$$\begin{bmatrix} 3\\0\\5 \end{bmatrix}$$
 is a linear combination of the vectors $\begin{bmatrix} 1\\-1\\2 \end{bmatrix}$ and $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ since $\begin{bmatrix} 3\\0\\5 \end{bmatrix} = 2 \begin{bmatrix} 1\\-1\\2 \end{bmatrix} + 1 \begin{bmatrix} 1\\2\\1 \end{bmatrix}$

Definition V.1.7 The span of a set of vectors is the collection of all linear combinations of that set:

$$\operatorname{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_m\}=\{c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_m\mathbf{v}_m\,|\,c_i\in\mathbb{R}\}.$$

For example:

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\} = \left\{ a \begin{bmatrix} 1\\-1\\2 \end{bmatrix} + b \begin{bmatrix} 1\\2\\1 \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Activity V.1.8 (~10 min) Consider span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$. Part 1: Sketch 1 $\begin{bmatrix} 1\\2 \end{bmatrix}$, 3 $\begin{bmatrix} 1\\2 \end{bmatrix}$, 0 $\begin{bmatrix} 1\\2 \end{bmatrix}$, and -2 $\begin{bmatrix} 1\\2 \end{bmatrix}$ in the xy plane.

Part 2: Sketch a representation of all the vectors belonging to span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \right\} = \left\{ a \begin{bmatrix} 1\\2 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$ in the *xy* plane.

Activity V.1.9 (~10 min) Consider span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$. Part 1: Sketch the following linear combinations in the xy plane.

$$1\begin{bmatrix}1\\2\end{bmatrix} + 0\begin{bmatrix}-1\\1\end{bmatrix} \qquad 0\begin{bmatrix}1\\2\end{bmatrix} + 1\begin{bmatrix}-1\\1\end{bmatrix} \qquad 1\begin{bmatrix}1\\2\end{bmatrix} + 1\begin{bmatrix}-1\\1\end{bmatrix}$$
$$-2\begin{bmatrix}1\\2\end{bmatrix} + 1\begin{bmatrix}-1\\1\end{bmatrix} \qquad -1\begin{bmatrix}1\\2\end{bmatrix} + -2\begin{bmatrix}-1\\1\end{bmatrix}$$

Part 2: Sketch a representation of all the vectors belonging to span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$ in the *xy* plane.

Activity V.1.10 (~5 min) Sketch a representation of all the vectors belonging to span $\left\{ \begin{bmatrix} 6\\-4 \end{bmatrix}, \begin{bmatrix} -3\\2 \end{bmatrix} \right\}$ in the xy plane.