Module S: Structure of Vector Spaces

Readiness Assurance Test

Choose the most appropriate response for each question.

1) Simplify the following Euclidean vector expression.

$$4 \begin{bmatrix} 1\\2\\3 \end{bmatrix} - 2 \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
(a)
$$\begin{bmatrix} 1\\-2\\-4 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 0\\2\\0 \end{bmatrix}$$
(c)
$$\begin{bmatrix} 2\\4\\6 \end{bmatrix}$$
(d)
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

2) Express the following system of linear equations as an augmented matrix.

$$2x_1 + x_2 + 4x_3 = 0$$

$$x_1 + x_2 + x_3 = 1$$

$$-3x_1 + 4x_2 + x_3 = -7$$

$$(a) \begin{bmatrix} 2 & 1 & 4 & | & 0 \\ 1 & 1 & 1 & | & 1 \\ -3 & 4 & 1 & | & -7 \end{bmatrix}$$

$$(b) \begin{bmatrix} 2 & 1 & | & -3 \\ 1 & 1 & 4 \\ 4 & 1 & 1 \\ 0 & 1 & | & -7 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 1 & | & 1 \\ 1 & -2 & | & 4 \\ 4 & 1 & | & 1 \\ 0 & 1 & | & -7 \end{bmatrix}$$

$$(d) \begin{bmatrix} 2 & 1 & | & 4 \\ 1 & 1 & | & 1 \\ -3 & 4 & | & -7 \end{bmatrix}$$

$$(a) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(b) \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4) Find the solution set of the following system of linear equations.

$$x_1 + x_2 + x_3 + x_4 = 4$$

$$2x_1 + 3x_2 + x_4 = 0$$

(a)
$$\begin{cases} \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix} \\ \end{cases}$$

(b)
$$\begin{cases} \begin{bmatrix} 12-3a-2b\\-8+2a+b\\a\\b \end{bmatrix} | a, b \in \mathbb{R} \end{cases}$$

(c)
$$\begin{cases} \begin{bmatrix} 1\\1+3a\\4+a\\-5+a \end{bmatrix} | a \in \mathbb{R} \end{cases}$$

(d) The system is inconsistent

5) Find the solution set of the following system of linear equations.

$$2x_1 + x_2 + 4x_3 = 0$$

$$x_1 + x_2 + x_3 = 1$$

$$-3x_1 + 4x_2 + x_3 = -7$$

(a)
$$\left\{ \begin{bmatrix} 1\\-6\\1 \end{bmatrix} \right\}$$
 (b) $\left\{ \begin{bmatrix} 1+a\\-2\\1+3a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$ (c) $\left\{ \begin{bmatrix} 2\\0\\-1 \end{bmatrix} \right\}$ (d) The system is inconsistent

6) How many vectors are required to span all of \mathbb{R}^4 (the space of Euclidean vectors with four components)?

7) How many vectors are required to span all of \mathcal{P}^3 (the space of polynomials of degree three or less)?

- (a) Infinitely Many (b) 2 (c) 3 (d) 4 (a) Infinitely Many (b) 2 (c) 3 (d) 4 (b) $\begin{bmatrix} -3\\2\\1\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} -2\\1\\0\\1\\1 \end{bmatrix}$? (a) $\begin{bmatrix} 1\\2\\4\\0\\0 \end{bmatrix}$ (b) $\begin{bmatrix} 0\\0\\3\\-7\\1\\0\\1 \end{bmatrix}$ (c) $\begin{bmatrix} 2\\2\\0\\1\\1\\0\\1 \end{bmatrix}$ (d) $\begin{bmatrix} -5\\3\\1\\1\\1\\1 \end{bmatrix}$ (e) $\begin{bmatrix} -3\\2\\1\\0\\1\\1 \end{bmatrix}$ (f) $\begin{bmatrix} -2\\1\\0\\1\\1\\1 \end{bmatrix}$? (f) $\begin{bmatrix} -3\\2\\1\\0\\1\\1 \end{bmatrix}$? (g) Which vector belongs to span $\left\{ \begin{bmatrix} -3\\2\\1\\0\\1\\2\\3 \end{bmatrix}$ (c) $\begin{bmatrix} -1\\-1\\-1\\0\\0\\0 \end{bmatrix}$ (d) $\begin{bmatrix} 0\\1\\2\\-3 \end{bmatrix}$ (o) What best describes span $\left\{ \begin{bmatrix} 1\\2\\3\\1\\2\\3 \end{bmatrix} \right\}$ in three-dimensional Euclidean space \mathbb{R}^3 ?
 - (a) all of \mathbb{R}^3 (b) a line (c) a plane (d) a sphere