Module A: Algebraic properties of linear maps

Readiness Assurance Test

Choose the most appropriate response for each question.

1) Which of the following is a solution to the system of linear equations

$$x + 3y - z = 2$$

$$2x + 8y + 3z = -1$$

$$-x - y + 9z = -10$$
(a) $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$
(b) $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$
(c) $\begin{bmatrix} 0\\1\\-1 \end{bmatrix}$
(d) $\begin{bmatrix} 1\\-1\\1 \end{bmatrix}$

2) Find a basis for the solution set of the following homogeneous system of linear equations

$$x + 2y + -z - w = 0$$

$$-2x - 4y + 3z + 5w = 0$$

(a)
$$\left\{ \begin{bmatrix} -2\\1\\0\\-3\\1 \end{bmatrix} \right\}$$
 (b)
$$\left\{ \begin{bmatrix} 1\\2\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\3 \end{bmatrix} \right\}$$
 (c)
$$\left\{ \begin{bmatrix} 2\\-1\\3\\-1 \end{bmatrix} \right\}$$
 (d)
$$\left\{ \begin{bmatrix} 1\\2\\1\\5 \end{bmatrix} \right\}$$

3) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \subseteq \mathbb{R}^3$$

- (a) It is a basis of \mathbb{R}^3 .
- (b) It spans but it is linearly dependent
- (c) It does not span and is linearly independent
- (d) It does not span and is linearly dependent

4) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\3 \end{bmatrix} \right\} \subseteq \mathbb{R}^3.$$

- (a) It does not span and is linearly independent
- (b) It does not span and is linearly dependent
- (c) It is a basis of \mathbb{R}^3 .
- (d) It spans but it is linearly dependent
- 5) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\3\\-3 \end{bmatrix} \right\} \subseteq \mathbb{R}^3.$$

- (a) It is a basis of \mathbb{R}^3 .
- (b) It spans but it is linearly dependent
- (c) It does not span and is linearly dependent
- (d) It does not span and is linearly independent
- 6) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \begin{bmatrix} -3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\5\\-4 \end{bmatrix} \right\} \subseteq \mathbb{R}^3.$$

- (a) It spans but it is linearly dependent
- (b) It is a basis of \mathbb{R}^3 .
- (c) It does not span and is linearly independent
- (d) It does not span and is linearly dependent
- 7) Suppose $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^5$ and you know that every vector in span $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ can be written uniquely as a linear combination of the vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. What can you conclude about n?
 - (a) $n \ge 5$
 - (b) $n \le 5$
 - (c) n = 5
 - (d) n could be any positive integer
- 8) Suppose you know that every vector in \mathbb{R}^5 can be written as a linear combination of the vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. What can you conclude about n?
 - (a) n = 5
 - (b) n could be any positive integer
 - (c) $n \ge 5$
 - (d) $n \le 5$
- 9) Suppose you know that every vector in \mathbb{R}^5 can be written uniquely as a linear combination of the vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. What can you conclude about n?
 - (a) n = 5
 - (b) n could be any positive integer
 - (c) $n \le 5$
 - (d) $n \ge 5$
- 10) Suppose you know that every vector in \mathbb{R}^5 can be written uniquely as a linear combination of the vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. What can you conclude about the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$?
 - (a) It is a basis of \mathbb{R}^5 .
 - (b) It does not span and is linearly dependent
 - (c) It does not span and is linearly independent
 - (d) It spans but it is linearly dependent