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At the end of this module, students will be able to...

V1. Vector property verification. ... show why an example satisfies a given
vector space property, but does not satisfy another given property.

V2. Vector space identification. ... list the eight defining properties of a vector
space, infer which of these properties a given example satisfies, and thus
determine if the example is a vector space.

V3. Linear combinations. ... determine if a Euclidean vector can be written as a
linear combination of a given set of Euclidean vectors.

V4. Spanning sets. ... determine if a set of Euclidean vectors spans Rn.

V5. Subspaces. ... determine if a subset of Rn is a subspace or not.
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Section V.4 Readiness Assurance Outcomes
Before beginning this module, each student should be able to...

• Add Euclidean vectors and multiply Euclidean vectors by scalars.

• Add complex numbers and multiply complex numbers by scalars.

• Add polynomials and multiply polynomials by scalars.

• Perform basic manipulations of augmented matrices and linear systems
E1,E2,E3.
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The following resources will help you prepare for this module.

• Adding and subtracting Euclidean vectors (Khan Acaemdy):
http://bit.ly/2y8AOwa

• Linear combinations of Euclidean vectors (Khan Academy):
http://bit.ly/2nK3wne

• Adding and subtracting complex numbers (Khan Academy):
http://bit.ly/1PE3ZMQ

• Adding and subtracting polynomials (Khan Academy):
http://bit.ly/2d5SLGZ

http://bit.ly/2y8AOwa
http://bit.ly/2nK3wne
http://bit.ly/1PE3ZMQ
http://bit.ly/2d5SLGZ
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Activity V.0.1 (∼20 min)
Consider each of the following vector properties. Label each property with R1, R2, and/or
R3 if that property holds for Euclidean vectors/scalars u, v,w of that dimension.

1 Addition associativity.

u + (v + w) = (u + v) + w.

2 Addition commutivity.

u + v = v + u.

3 Addition identity.

There exists some z where v + z = v.

4 Addition inverse.

There exists some −v where
v + (−v) = z.

5 Addition midpoint uniqueness.

There exists a unique m where the
distance from u to m equals the
distance from m to v.

6 Scalar multiplication associativity.

a(bv) = (ab)v.

7 Scalar multiplication identity.

1v = v.

8 Scalar multiplication relativity.

There exists some scalar c where either
cv = w or cw = v.

9 Scalar distribution.

a(u + v) = au + av.

10 Vector distribution.

(a + b)v = av + bv.

11 Orthogonality.

There exists a non-zero vector n such
that n is orthogonal to both u and v.

12 Bidimensionality.

v = ai + bj for some value of a, b.
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Definition V.0.2
A vector space V is any collection of mathematical objects with associated
addition and scalar multiplication operations that satisfy the following properties.
Let u, v,w belong to V , and let a, b be scalar numbers.

• Addition associativity.
u + (v + w) = (u + v) + w.

• Addition commutivity.
u + v = v + u.

• Addition inverse.
There exists some z where
v + z = v.

• Additive inverses exist.
There exists some −v where
v + (−v) = z.

• Scalar multiplication
associativity.
a(bv) = (ab)v.

• Scalar multiplication identity.
1v = v.

• Scalar distribution.
a(u + v) = au + av.

• Vector distribution.
(a + b)v = av + bv.

Any Euclidean vector space Rn satisfies all eight requirements regardless of the
value of n, but we will also study other types of vector spaces.
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Remark V.1.1
Last time, we defined a vector space V to be any collection of mathematical
objects with associated addition and scalar multiplication operations that satisfy
the following eight properties for all u, v,w in V , and all scalars (i.e. real numbers)
a, b.

• Addition associativity.
u + (v + w) = (u + v) + w.

• Addition commutivity.
u + v = v + u.

• Addition inverse.
There exists some z where
v + z = v.

• Additive inverses exist.
There exists some −v where
v + (−v) = z.

• Scalar multiplication
associativity.
a(bv) = (ab)v.

• Scalar multiplication identity.
1v = v.

• Scalar distribution.
a(u + v) = au + av.

• Vector distribution.
(a + b)v = av + bv.
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Remark V.1.2
The following sets are examples of vector spaces, with the usual/natural operations
for addition and scalar multiplication.

• Rn: Euclidean vectors with n components.

• R∞: Sequences of real numbers (v1, v2, . . . ).

• Mm,n: Matrices of real numbers with m rows and n columns.

• C: Complex numbers.

• Pn: Polynomials of degree n or less.

• P: Polynomials of any degree.

• C (R): Real-valued continuous functions.
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Activity V.1.3 (∼20 min)
Consider the set V = {(x , y) | y = ex} with operations defined by

(x , y)⊕ (z ,w) = (x + z , yw) c � (x , y) = (cx , y c)

Part 1: Show that V satisfies the vector distributive property

(a + b)� v = (a� v)⊕ (b � v)

by letting v = (x , y) and showing both sides simplify to the same expression.
Part 2: Show that V contains an additive identity element by choosing z = ( ? , ? )
such that v ⊕ z = (x , y)⊕ ( ? , ? ) = v for any v = (x , y) ∈ V .
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Activity V.1.3 (∼20 min)
Consider the set V = {(x , y) | y = ex} with operations defined by

(x , y)⊕ (z ,w) = (x + z , yw) c � (x , y) = (cx , y c)

Part 1: Show that V satisfies the vector distributive property

(a + b)� v = (a� v)⊕ (b � v)
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Part 2: Show that V contains an additive identity element by choosing z = ( ? , ? )
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Remark V.1.4
It turns out V = {(x , y) | y = ex} with operations defined by

(x , y)⊕ (z ,w) = (x + z , yw) c � (x , y) = (cx , y c)

satisifes all eight properties.

• Addition associativity.
u⊕ (v ⊕w) = (u⊕ v)⊕w.

• Addition commutivity.
u⊕ v = v ⊕ u.

• Addition identity.
There exists some z where
v ⊕ z = v.

• Addition inverse.
There exists some −v where
v ⊕ (−v) = z.

• Scalar multiplication
associativity.
a� (b � v) = (ab)� v.

• Scalar multiplication identity.
1� v = v.

• Scalar distribution.
a� (u⊕ v) = (a� u)⊕ (a� v).

• Vector distribution.
(a + b)� v = (a� v)⊕ (b � v).

Thus, V is a vector space.
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Activity V.1.5 (∼15 min)
Let V = {(x , y) | x , y ∈ R} have operations defined by

(x , y)⊕ (z ,w) = (x + y + z + w , x2 + z2) c � (x , y) = (xc , y + c − 1).

Part 1: Show that the scalar multiplication identity holds by simplifying 1� (x , y)
to (x , y).
Part 2: Show that the addition identity property fails by showing that
(0,−1)⊕ z 6= (0,−1) no matter how z = (z1, z2) is chosen.
Part 3: Can V be a vector space?
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Definition V.1.6
A linear combination of a set of vectors {v1, v2, . . . , vm} is given by
c1v1 + c2v2 + · · ·+ cmvm for any choice of scalar multiples c1, c2, . . . , cm.

For example, we can say

3
0
5

 is a linear combination of the vectors

 1
−1
2

 and

1
2
1


since 3

0
5

 = 2

 1
−1
2

+ 1

1
2
1
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Definition V.1.7
The span of a set of vectors is the collection of all linear combinations of that set:

span{v1, v2, . . . , vm} = {c1v1 + c2v2 + · · ·+ cmvm | ci ∈ R} .

For example:

span


 1
−1
2

 ,

1
2
1

 =

a

 1
−1
2

+ b

1
2
1

 ∣∣∣∣∣∣ a, b ∈ R
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Consider span

{[
1
2

]}
.

Part 1: Sketch 1

[
1
2

]
, 3

[
1
2

]
, 0

[
1
2

]
, and −2

[
1
2

]
in the xy plane.

Part 2: Sketch a representation of all the vectors belonging to

span

{[
1
2

]}
=

{
a

[
1
2

] ∣∣∣∣ a ∈ R
}

in the xy plane.
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Consider span

{[
1
2

]}
.

Part 1: Sketch 1

[
1
2

]
, 3

[
1
2

]
, 0

[
1
2

]
, and −2

[
1
2

]
in the xy plane.

Part 2: Sketch a representation of all the vectors belonging to

span

{[
1
2

]}
=

{
a

[
1
2

] ∣∣∣∣ a ∈ R
}

in the xy plane.
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Consider span

{[
1
2

]}
.

Part 1: Sketch 1

[
1
2

]
, 3

[
1
2

]
, 0

[
1
2

]
, and −2

[
1
2

]
in the xy plane.

Part 2: Sketch a representation of all the vectors belonging to

span

{[
1
2

]}
=

{
a

[
1
2

] ∣∣∣∣ a ∈ R
}

in the xy plane.



Module V

Math 237

Module V

Section V.0

Section V.1

Section V.2

Section V.3

Section V.4

Activity V.1.9 (∼10 min)

Consider span

{[
1
2

]
,

[
−1
1

]}
.

Part 1: Sketch the following linear combinations in the xy plane.

1

[
1
2

]
+ 0

[
−1
1

]
0

[
1
2

]
+ 1

[
−1
1

]
1

[
1
2

]
+ 1

[
−1
1

]

−2

[
1
2

]
+ 1

[
−1
1

]
− 1

[
1
2

]
+−2

[
−1
1

]

Part 2: Sketch a representation of all the vectors belonging to span

{[
1
2

]
,

[
−1
1

]}
in the xy plane.
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Activity V.1.9 (∼10 min)

Consider span

{[
1
2

]
,

[
−1
1

]}
.

Part 1: Sketch the following linear combinations in the xy plane.

1

[
1
2

]
+ 0

[
−1
1

]
0

[
1
2

]
+ 1

[
−1
1

]
1

[
1
2

]
+ 1

[
−1
1

]

−2

[
1
2

]
+ 1

[
−1
1

]
− 1

[
1
2

]
+−2

[
−1
1

]

Part 2: Sketch a representation of all the vectors belonging to span

{[
1
2

]
,

[
−1
1

]}
in the xy plane.
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Activity V.1.9 (∼10 min)

Consider span

{[
1
2

]
,

[
−1
1

]}
.

Part 1: Sketch the following linear combinations in the xy plane.

1

[
1
2

]
+ 0

[
−1
1

]
0

[
1
2

]
+ 1

[
−1
1

]
1

[
1
2

]
+ 1

[
−1
1

]

−2

[
1
2

]
+ 1

[
−1
1

]
− 1

[
1
2

]
+−2

[
−1
1

]

Part 2: Sketch a representation of all the vectors belonging to span

{[
1
2

]
,

[
−1
1

]}
in the xy plane.
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Activity V.1.10 (∼5 min)

Sketch a representation of all the vectors belonging to span

{[
6
−4

]
,

[
−3
2

]}
in the

xy plane.
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Remark V.2.1
Recall these definitions from last class:

• A linear combination of vectors is given by adding scalar multiples of those
vectors, such as: 3

0
5

 = 2

 1
−1
2

+ 1

1
2
1


• The span of a set of vectors is the collection of all linear combinations of that

set, such as:

span


 1
−1
2

 ,

1
2
1

 =

a

 1
−1
2

+ b

1
2
1

 ∣∣∣∣∣∣ a, b ∈ R
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Activity V.2.2 (∼15 min)

The vector

−1
−6
1

 belongs to span


 1

0
−3

 ,

−1
−3
2

 exactly when there exists a

solution to the vector equation x1

 1
0
−3

+ x2

−1
−3
2

 =

−1
−6
1

.

Part 1: Reinterpret this vector equation as a system of linear equations.
Part 2: Find its solution set, using CoCalc.com to find RREF of its corresponding
augmented matrix.

Part 3: Given this solution set, does

−1
−6
1

 belong to span


 1

0
−3

 ,

−1
−3
2

?
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The vector

−1
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1

 belongs to span


 1

0
−3

 ,

−1
−3
2

 exactly when there exists a

solution to the vector equation x1

 1
0
−3

+ x2

−1
−3
2

 =

−1
−6
1

.

Part 1: Reinterpret this vector equation as a system of linear equations.

Part 2: Find its solution set, using CoCalc.com to find RREF of its corresponding
augmented matrix.

Part 3: Given this solution set, does

−1
−6
1
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0
−3

 ,

−1
−3
2

?
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Activity V.2.2 (∼15 min)

The vector

−1
−6
1

 belongs to span


 1

0
−3

 ,

−1
−3
2

 exactly when there exists a

solution to the vector equation x1

 1
0
−3

+ x2

−1
−3
2

 =

−1
−6
1

.

Part 1: Reinterpret this vector equation as a system of linear equations.
Part 2: Find its solution set, using CoCalc.com to find RREF of its corresponding
augmented matrix.

Part 3: Given this solution set, does
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0
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−3
2

?
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Activity V.2.2 (∼15 min)

The vector

−1
−6
1

 belongs to span


 1

0
−3

 ,

−1
−3
2

 exactly when there exists a

solution to the vector equation x1

 1
0
−3

+ x2

−1
−3
2

 =

−1
−6
1

.

Part 1: Reinterpret this vector equation as a system of linear equations.
Part 2: Find its solution set, using CoCalc.com to find RREF of its corresponding
augmented matrix.

Part 3: Given this solution set, does

−1
−6
1

 belong to span


 1

0
−3

 ,

−1
−3
2

?
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Fact V.2.3
A vector b belongs to span{v1, . . . , vn} if and only if the linear system
corresponding to [v1 . . . vn |b] is consistent.

Put another way, b belongs to span{v1, . . . , vn} exactly when RREF[v1 . . . vn |b]
doesn’t have a row [0 · · · 0 | 1] representing the contradiction 0 = 1.
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Activity V.2.4 (∼10 min)

Determine if


3
−2
1
5

 belongs to span




1
0
−3
2

 ,


−1
−3
2
2


 by row-reducing an

appropriate matrix.
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Activity V.2.5 (∼5 min)

Determine if

−1
−9
0

 belongs to span


 1

0
−3

 ,

−1
−3
2

 by row-reducing an

appropriate matrix.
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Section V.4 Activity V.2.6 (∼10 min)
Does the third-degree polynomial 3y3 − 2y2 + y + 5 in P3 belong to
span{y3 − 3y + 2,−y3 − 3y2 + 2y + 2}?

Part 1: Reinterpret this question as an equivalent exercise involving Euclidean
vectors in R4. (Hint: What four numbers must you know to write a P3

polynomial?)
Part 2: Solve this equivalent exercise, and use its solution to answer the original
question.
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Does the third-degree polynomial 3y3 − 2y2 + y + 5 in P3 belong to
span{y3 − 3y + 2,−y3 − 3y2 + 2y + 2}?
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Activity V.2.7 (∼5 min)

Does the matrix

[
3 −2
1 5

]
belong to span

{[
1 0
−3 2

]
,

[
−1 −3
2 2

]}
?
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Activity V.2.8 (∼5 min)
Does the complex number 2i belong to span{−3 + i , 6− 2i}?
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Activity V.3.1 (∼5 min)
How many vectors are required to span R2? Sketch a drawing in the xy plane to
support your answer.

(a) 1

(b) 2

(c) 3

(d) 4

(e) Infinitely Many
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Section V.4 Activity V.3.2 (∼5 min)
How many vectors are required to span R3?

(a) 1

(b) 2

(c) 3

(d) 4

(e) Infinitely Many



Module V

Math 237

Module V

Section V.0

Section V.1

Section V.2

Section V.3

Section V.4

Fact V.3.3
At least n vectors are required to span Rn.
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Section V.4 Activity V.3.4 (∼15 min)

Choose a vector

 ?
?
?

 in R3 that is not in span


 1
−1
0

 ,

−2
0
1

 by using CoCalc

to verify that RREF

 1 −2 ?
−1 0 ?
0 1 ?

 =

1 0 0
0 1 0
0 0 1

. (Why does this work?)
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Section V.2

Section V.3

Section V.4 Fact V.3.5
The set {v1, . . . , vm} fails to span all of Rn exactly when RREF[v1 . . . vm] has a
row of zeros: 1 −2
−1 0
0 1

 ∼
1 0

0 1
0 0

⇒
 1 −2 a
−1 0 b
0 1 c

 ∼
1 0 0

0 1 0
0 0 1

 for some choice of vector

ab
c
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Activity V.3.6 (∼5 min)

Consider the set of vectors S =




2
3
0
−1

 ,


1
−4
3
0

 ,


2
0
0
3

 ,


0
3
5
7

 ,


3

13
7

16


. Does

R4 = spanS?
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Activity V.3.7 (∼10 min)
Consider the set of third-degree polynomials

S =
{

2x3 + 3x2 − 1, 2x3 + 3, 3x3 + 13x2 + 7x + 16,−x3 + 10x2 + 7x + 14, 4x3 + 3x2 + 2
}
.

Does P3 = spanS? (Hint: first rewrite the question so it is about Euclidean
vectors.)
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Activity V.3.8 (∼10 min)
Consider the set of matrices

S =

{[
1 3
0 1

]
,

[
1 −1
1 0

]
,

[
1 0
0 2

]}
Does M2,2 = spanS?
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Section V.2

Section V.3

Section V.4
Activity V.3.9 (∼10 min)
Let v1, v2, v3 ∈ R7 be three vectors, and suppose w is another vector with
w ∈ span {v1, v2, v3}. What can you conclude about span {w, v1, v2, v3} ?

(a) span {w, v1, v2, v3} is larger than span {v1, v2, v3}.
(b) span {w, v1, v2, v3} = span {v1, v2, v3}.
(c) span {w, v1, v2, v3} is smaller than span {v1, v2, v3}.
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Module V Section 4
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Section V.3

Section V.4

Definition V.4.1
A subset of a vector space is called a subspace if it is a vector space on its own.

For example, the span of these two vectors forms a planar subspace inside of the
larger vector space R3.



Module V

Math 237

Module V

Section V.0

Section V.1

Section V.2

Section V.3

Section V.4

Fact V.4.2
Any subset S of a vector space V satisfies the eight vector space properties
automatically, since it is a collection of known vectors.

However, to verify that it’s a subspace, we need to check that addition and
multiplication still make sense using only vectors from S . So we need to check two
things:

• The set is closed under addition: for any x, y ∈ S , the sum x + y is also in S .

• The set is closed under scalar multiplication: for any x ∈ S and scalar
c ∈ R, the product cx is also in S .
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Activity V.4.3 (∼15 min)

Let S =


xy
z

 ∣∣∣∣∣∣ x + 2y + z = 0

.

Part 1: Let v =

xy
z

 and w =

ab
c

 be vectors in S , so x + 2y + z = 0 and

a + 2b + c = 0. Show that v + w =

x + a
y + b
z + c

 also belongs to S by verifying that

(x + a) + 2(y + b) + (z + c) = 0.

Part 2: Let v =

xy
z

 ∈ S , so x + 2y + z = 0. Show that cv also belongs to S for

any c ∈ R.
Part 3: Is S is a subspace of R3?
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Activity V.4.3 (∼15 min)

Let S =


xy
z

 ∣∣∣∣∣∣ x + 2y + z = 0

.

Part 1: Let v =

xy
z

 and w =

ab
c

 be vectors in S , so x + 2y + z = 0 and

a + 2b + c = 0. Show that v + w =

x + a
y + b
z + c

 also belongs to S by verifying that

(x + a) + 2(y + b) + (z + c) = 0.

Part 2: Let v =

xy
z

 ∈ S , so x + 2y + z = 0. Show that cv also belongs to S for

any c ∈ R.
Part 3: Is S is a subspace of R3?
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Activity V.4.3 (∼15 min)

Let S =


xy
z

 ∣∣∣∣∣∣ x + 2y + z = 0

.

Part 1: Let v =

xy
z

 and w =

ab
c

 be vectors in S , so x + 2y + z = 0 and

a + 2b + c = 0. Show that v + w =

x + a
y + b
z + c

 also belongs to S by verifying that

(x + a) + 2(y + b) + (z + c) = 0.

Part 2: Let v =

xy
z

 ∈ S , so x + 2y + z = 0. Show that cv also belongs to S for

any c ∈ R.

Part 3: Is S is a subspace of R3?
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Activity V.4.3 (∼15 min)

Let S =


xy
z

 ∣∣∣∣∣∣ x + 2y + z = 0

.

Part 1: Let v =

xy
z

 and w =

ab
c

 be vectors in S , so x + 2y + z = 0 and

a + 2b + c = 0. Show that v + w =

x + a
y + b
z + c

 also belongs to S by verifying that

(x + a) + 2(y + b) + (z + c) = 0.

Part 2: Let v =

xy
z

 ∈ S , so x + 2y + z = 0. Show that cv also belongs to S for

any c ∈ R.
Part 3: Is S is a subspace of R3?
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Activity V.4.4 (∼10 min)

Let S =


xy
z

 ∣∣∣∣∣∣ x + 2y + z = 4

. Choose a vector v =

 ?
?
?

 in S and a real

number c = ? , and show that cv isn’t in S . Is S a subspace of R3?
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Remark V.4.5
Since 0 is a scalar and 0v = z for any vector v, a set that is closed under scalar
multiplication must contain the zero vector z for that vector space.

Put another way, an easy way to check that a subset isn’t a subspace is to show it
doesn’t contain 0.



Module V

Math 237

Module V

Section V.0

Section V.1

Section V.2

Section V.3

Section V.4

Activity V.4.6 (∼10 min)
Consider these two subsets of R4:

S =




a
b
−b
−a


∣∣∣∣∣∣∣∣ a, b are real numbers

 T =




a
b

b − 1
a− 1


∣∣∣∣∣∣∣∣ a, b are real numbers



Part 1: Which set is not a subspace of R4?
Part 2: Is the set of polynomials

S =
{
ax3 + bx2 + (b − 1)x + (a− 1)

∣∣ a, b are real numbers
}

a subspace of P3?
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Activity V.4.6 (∼10 min)
Consider these two subsets of R4:

S =




a
b
−b
−a


∣∣∣∣∣∣∣∣ a, b are real numbers

 T =




a
b

b − 1
a− 1


∣∣∣∣∣∣∣∣ a, b are real numbers


Part 1: Which set is not a subspace of R4?

Part 2: Is the set of polynomials

S =
{
ax3 + bx2 + (b − 1)x + (a− 1)

∣∣ a, b are real numbers
}

a subspace of P3?
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Activity V.4.6 (∼10 min)
Consider these two subsets of R4:

S =




a
b
−b
−a


∣∣∣∣∣∣∣∣ a, b are real numbers

 T =




a
b

b − 1
a− 1


∣∣∣∣∣∣∣∣ a, b are real numbers


Part 1: Which set is not a subspace of R4?
Part 2: Is the set of polynomials

S =
{
ax3 + bx2 + (b − 1)x + (a− 1)

∣∣ a, b are real numbers
}

a subspace of P3?
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Activity V.4.7 (∼10 min)
Consider the subset A of R2 where at least one coordinate of each vector is 0.

This set contains 0, and it’s not hard to show that for every v in A and scalar
c ∈ R, cv is also in A. Is A a subspace of R2? Why?
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Activity V.4.8 (∼5 min)
Let W be a subspace of a vector space V . How are spanW and W related?

(a) spanW is bigger than W

(b) spanW is the same as W

(c) spanW is smaller than W
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Fact V.4.9
If S is any subset of a vector space V , then since spanS collects all possible linear
combinations, span S is automatically a subspace of V .

In fact, spanS is always the smallest subspace of V that contains all the vectors in
S .
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