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What structure do vector spaces have?
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At the end of this module, students will be able to...

S1. Linear independence. ... determine if a set of Euclidean vectors is linearly
dependent or independent.

S2. Basis verification. ... determine if a set of Euclidean vectors is a basis of Rn.

S3. Basis computation. ... compute a basis for the subspace spanned by a given
set of Euclidean vectors.

S4. Dimension. ... compute the dimension of a subspace of Rn.

S5. Abstract vector spaces. ... solve exercises related to standards V3-S4 when
posed in terms of polynomials or matrices.

S6. Basis of solution space. ... find a basis for the solution set of a
homogeneous system of equations.
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Readiness Assurance Outcomes
Before beginning this module, each student should be able to...

• Add Euclidean vectors and multiply Euclidean vectors by scalars.

• Perform basic manipulations of augmented matrices and linear systems
E1,E2,E3.

• Apply linear combinations and spanning sets V3,V4.
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Section S.3 The following resources will help you prepare for this module.

• Adding and subtracting Euclidean vectors (Khan Acaemdy):
http://bit.ly/2y8AOwa

• Linear combinations of Euclidean vectors (Khan Academy):
http://bit.ly/2nK3wne

• Adding and subtracting complex numbers (Khan Academy):
http://bit.ly/1PE3ZMQ

• Adding and subtracting polynomials (Khan Academy):
http://bit.ly/2d5SLGZ

http://bit.ly/2y8AOwa
http://bit.ly/2nK3wne
http://bit.ly/1PE3ZMQ
http://bit.ly/2d5SLGZ


Module S

Math 237

Module S

Section S.1

Section S.2

Section S.3

Module S Section 1



Module S

Math 237

Module S

Section S.1

Section S.2

Section S.3
Activity S.1.1 (∼10 min)
Consider the two sets

S =


2

3
1

 ,

1
1
4

 T =


2

3
1

 ,

1
1
4

 ,

 −1
0
−11


Which of the following is true?

(A) spanS is bigger than spanT .

(B) spanS and spanT are the same size.

(C) spanS is smaller than spanT .
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Definition S.1.2
We say that a set of vectors is linearly dependent if one vector in the set belongs
to the span of the others. Otherwise, we say the set is linearly independent.

You can think of linearly dependent sets as containing a redundant vector, in the
sense that you can drop a vector out without reducing the span of the set. In the
above image, all three vectors lay on the same planar subspace, but only two
vectors are needed to span the plane, so the set is linearly dependent.
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Activity S.1.3 (∼10 min)
Let u, v,w be vectors in Rn. Suppose 3u− 5v = w, so the set {u, v,w} is linearly
dependent. Which of the following is true of the vector equation xu + yv + zw = 0
?

(A) It is consistent with one solution

(B) It is consistent with infinitely many solutions

(C) It is inconsistent.
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Fact S.1.4
For any vector space, the set {v1, . . . vn} is linearly dependent if and only if
x1v1 + · · ·+ xnvn = z is consistent with infinitely many solutions.
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Activity S.1.5 (∼10 min)
Find

RREF


2 2 3 −1 4 0
3 0 13 10 3 0
0 0 7 7 0 0
−1 3 16 14 2 0


and mark the part of the matrix that demonstrates that

S =




2
3
0
−1

 ,


2
0
0
3

 ,


3

13
7

16

 ,


−1
10
7

14

 ,


4
3
0
2




is linearly dependent (the part that shows its linear system has infinitely many
solutions).
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Fact S.1.6
A set of Euclidean vectors {v1, . . . vn} is linearly dependent if and only if
RREF

[
v1 . . . vn

]
has a column without a pivot position.
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Activity S.1.7 (∼5 min)

Is the set of Euclidean vectors




−4
2
3
0
−1

 ,


1
2
0
0
3

 ,


1

10
10
2
6

 ,


3
4
7
2
1


 linearly dependent or

linearly independent?
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Activity S.1.8 (∼10 min)
Is the set of polynomials

{
x3 + 1, x2 + 2x , x2 + 7x + 4

}
linearly dependent or

linearly independent?
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Activity S.1.9 (∼5 min)
What is the largest number of vectors in R4 that can form a linearly independent
set?

(a) 3

(b) 4

(c) 5

(d) You can have infinitely many vectors and still be linearly independent.
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What is the largest number of vectors in

P4 =
{
ax4 + bx3 + cx2 + dx + e

∣∣ a, b, c , d , e ∈ R
}

that can form a linearly independent set?

(a) 3

(b) 4

(c) 5

(d) You can have infinitely many vectors and still be linearly independent.
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What is the largest number of vectors in

P = {f (x) | f (x) is any polynomial}

that can form a linearly independent set?

(a) 3

(b) 4

(c) 5

(d) You can have infinitely many vectors and still be linearly independent.
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Definition S.2.1
A basis is a linearly independent set that spans a vector space.

The standard basis of Rn is the set {e1, . . . , en} where

e1 =



1
0
0
...
0
0


e2 =



0
1
0
...
0
0


· · · en =



0
0
0
...
0
1



For R3, these are the vectors e1 = ı̂ =

1
0
0

 , e2 = ̂ =

0
1
0

 , and e3 = k̂ =

0
0
1

.
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Observation S.2.2
A basis may be thought of as a collection of building blocks for a vector space,
since every vector in the space can be expressed as a unique linear combination of
basis vectors.

For example, in many calculus courses, vectors in R3 are often expressed in their
component form

(3,−2, 4) =

 3
−2
4


or in their standard basic vector form

3e1 − 2e2 + 4e3 = 3ı̂− 2̂ + 4k̂.

Since every vector in R3 can be uniquely described as a linear combination of the
vectors in {e1, e2, e3}, this set is indeed a basis.
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Activity S.2.3 (∼15 min)
Label each of the sets A,B,C ,D,E as

• SPANS R4 or DOES NOT SPAN R4

• LINEARLY INDEPENDENT or LINEARLY DEPENDENT

• BASIS FOR R4 or NOT A BASIS FOR R4

by finding RREF for their corresponding matrices.

A =




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 B =




2
3
0
−1

 ,


2
0
0
3

 ,


4
3
0
2

 ,


−3
0
1
3




C =




2
3
0
−1

 ,


2
0
0
3

 ,


3

13
7

16

 ,


−1
10
7

14

 ,


4
3
0
2


 D =




2
3
0
−1

 ,


4
3
0
2

 ,


−3
0
1
3

 ,


3
6
1
5




E =




5
3
0
−1

 ,


−2
1
0
3

 ,


4
5
1
3
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Activity S.2.4 (∼10 min)
If {v1, v2, v3, v4} is a basis for R4, that means RREF[v1 v2 v3 v4] doesn’t have a
non-pivot column, and doesn’t have a row of zeros. What is RREF[v1 v2 v3 v4]?

RREF[v1 v2 v3 v4] =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
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The set {v1, . . . , vm} is a basis for Rn if and only if m = n and

RREF[v1 . . . vn] =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

.

That is, a basis for Rn must have exactly n vectors and its square matrix must
row-reduce to the so-called identity matrix containing all zeros except for a
downward diagonal of ones. (We will learn where the identity matrix gets its name
in a later module.)
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Observation S.2.6
Recall that a subspace of a vector space is a subset that is itself a vector space.

One easy way to construct a subspace is to take the span of set, but a linearly
dependent set contains “redundant” vectors. For example, only two of the three
vectors in the following image are needed to span the planar subspace.
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Activity S.2.7 (∼10 min)

Consider the subspace W = span




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 of R4.

Part 1: Mark the part of RREF


2 2 2 1
3 0 −3 5
0 1 2 −1
1 −1 −3 0

 that shows that W ’s spanning

set is linearly dependent.
Part 2: Find a basis for W by removing a vector from its spanning set to make it
linearly independent.
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Activity S.2.7 (∼10 min)

Consider the subspace W = span




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 of R4.

Part 1: Mark the part of RREF


2 2 2 1
3 0 −3 5
0 1 2 −1
1 −1 −3 0

 that shows that W ’s spanning

set is linearly dependent.

Part 2: Find a basis for W by removing a vector from its spanning set to make it
linearly independent.
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Activity S.2.7 (∼10 min)

Consider the subspace W = span




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 of R4.

Part 1: Mark the part of RREF


2 2 2 1
3 0 −3 5
0 1 2 −1
1 −1 −3 0

 that shows that W ’s spanning

set is linearly dependent.
Part 2: Find a basis for W by removing a vector from its spanning set to make it
linearly independent.
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Fact S.2.8
Let S = {v1, . . . , vm}. The easiest basis describing spanS is the set of vectors in S
given by the pivot columns of RREF[v1 . . . vm].

Put another way, to compute a basis for the subspace span S , simply remove the
vectors corresponding to the non-pivot columns of RREF[v1 . . . vm].
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Activity S.2.9 (∼10 min)
Let W be the subspace of R4 given by

W = span




1
3
1
−1

 ,


2
−1
1
2

 ,


4
5
3
0

 ,


3
2
2
1




Find a basis for W .
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Activity S.2.10 (∼10 min)
Let W be the subspace of P3 given by

W = span
{
x3 + 3x2 + x − 1, 2x3 − x2 + x + 2, 4x3 + 5x3 + 3x , 3x3 + 2x2 + 2x + 1

}
Find a basis for W .
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Observation S.3.1
In the previous section, we learned that computing a basis for the subspace
span{v1, . . . , vm}, is as simple as removing the vectors corresponding to the
non-pivot columns of RREF[v1 . . . vm].

For example, since

RREF

 1 2 3
0 −2 −2
−3 1 −2

 =

 1 0 1

0 1 1
0 0 0



the subspace W = span


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
−2

 has


 1

0
−3

 ,

 2
−2
1

 as a

basis.
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Let

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 and T =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1




Part 1: Find a basis for span S .
Part 2: Find a basis for spanT .
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Let

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 and T =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1




Part 1: Find a basis for span S .

Part 2: Find a basis for spanT .
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Let

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 and T =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1




Part 1: Find a basis for span S .
Part 2: Find a basis for spanT .
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Observation S.3.3
Even though we found different bases for them, spanS and spanT are exactly the
same subspace of R4, since

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1


 = T
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Any non-trivial vector space has infinitely-many different bases, but all the bases
for a given vector space are exactly the same size.

For example,

{e1, e2, e3} and


1

0
0

 ,

0
1
0

 ,

1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


are all valid bases for R3, and they all contain three vectors.
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Definition S.3.5
The dimension of a vector space is equal to the size of any basis for the vector
space.

As you’d expect, Rn has dimension n. For example, R3 has dimension 3 because
any basis for R3 such as

{e1, e2, e3} and


1

0
0

 ,

0
1
0

 ,

1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


contains exactly three vectors.
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Activity S.3.6 (∼10 min)
Find the dimension of each subspace of R4 by finding RREF for each corresponding
matrix.

span




2
3
0
−1

 ,


2
0
0
3

 ,


4
3
0
2

 ,


−3
0
1
3


 span




2
3
0
−1

 ,


2
0
0
3

 ,


3

13
7

16

 ,


−1
10
7

14

 ,


4
3
0
2




span




2
3
0
−1

 ,


4
3
0
2

 ,


−3
0
1
3

 ,


3
6
1
5


 span




5
3
0
−1

 ,


−2
1
0
3

 ,


4
5
1
3
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Every vector space with finite dimension, that is, every vector space V with a basis
of the form {v1, v2, . . . , vn} is said to be isomorphic to a Euclidean space Rn,
since there exists a natural correspondance between vectors in V and vectors in Rn:

c1v1 + c2v2 + · · ·+ cnvn ↔


c1
c2
...
cn
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Observation S.3.8
We’ve already been taking advantage of the previous fact by converting polynomials
and matrices into Euclidean vectors. Since P3 and M2,2 are both four-dimensional:

4x3 + 0x2 − 1x + 5↔


4
0
−1
5

↔ [
4 0
−1 5

]
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Observation S.3.9
The space of polynomials P (of any degree) has the basis {1, x , x2, x3, . . . }, so it is
a natural example of an infinite-dimensional vector space.

Since P and other infinite-dimensional spaces cannot be treated as an isomorphic
finite-dimensional Euclidean space Rn, vectors in such spaces cannot be studied by
converting them into Euclidean vectors. Fortunately, most of the examples we will
be interested in for this course will be finite-dimensional.
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Definition S.3.10
A homogeneous system of linear equations is one of the form:

a11x1 + a12x2 + . . .+ a1nxn = 0

a21x1 + a22x2 + . . .+ a2nxn = 0

...
...

...
...

am1x1 + am2x2 + . . .+ amnxn = 0

This system is equivalent to the vector equation:

x1v1 + · · ·+ xnvn = 0

and the augmented matrix: 
a11 a12 · · · a1n 0
a21 a22 · · · a2n 0

...
...

. . .
...

...
am1 am2 · · · amn 0
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Activity S.3.11 (∼5 min)

Note that if

a1...
an

 and

b1...
bn

 are solutions to x1v1 + · · ·+ xnvn = 0 so is

a1 + b1
...

an + bn

, since

a1v1 + · · ·+ anvn = 0 and b1v1 + · · ·+ bnvn = 0

implies
(a1 + b1)v1 + · · ·+ (an + bn)vn = 0.

Similarly, if c ∈ R,

ca1...
can

 is a solution. Thus the solution set of a homogeneous

system is...

a) A basis for Rn. b) A subspace of Rn. c) The empty set.
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Activity S.3.12 (∼10 min)
Consider the homogeneous system of equations

x1 + 2x2 + x4 =0

2x1 + 4x2− x3− 2x4 =0

3x1 + 6x2− x3− x4 =0

Part 1: Find its solution set (a subspace of R4).
Part 2: Rewrite this solution space in the forma


?
?
?
?

+ b


?
?
?
?


∣∣∣∣∣∣∣∣ a, b ∈ R

 .
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Activity S.3.12 (∼10 min)
Consider the homogeneous system of equations

x1 + 2x2 + x4 =0

2x1 + 4x2− x3− 2x4 =0

3x1 + 6x2− x3− x4 =0

Part 1: Find its solution set (a subspace of R4).

Part 2: Rewrite this solution space in the forma


?
?
?
?

+ b


?
?
?
?


∣∣∣∣∣∣∣∣ a, b ∈ R

 .
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Activity S.3.12 (∼10 min)
Consider the homogeneous system of equations

x1 + 2x2 + x4 =0

2x1 + 4x2− x3− 2x4 =0

3x1 + 6x2− x3− x4 =0

Part 1: Find its solution set (a subspace of R4).
Part 2: Rewrite this solution space in the forma


?
?
?
?

+ b


?
?
?
?


∣∣∣∣∣∣∣∣ a, b ∈ R

 .
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Fact S.3.13
The coefficients of the free variables in the solution set of a linear system always
yield linearly independent vectors.

Thus if a


4
1
0
0

+ b


−3
0
−2
1


∣∣∣∣∣∣∣∣ a, b ∈ R


is the solution space for a homoegeneous system, then


4
1
0
0

 ,


−3
0
−2
1




is a basis for the solution space.
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Activity S.3.14 (∼10 min)
Consider the homogeneous system of equations

x1− 3x2 + 2x3 =0

2x1− 6x2 + 4x3 + 3x4 =0

−2x1 + 6x2− 4x3− 4x4 =0

Find a basis for its solution space.
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Activity S.3.15 (∼5 min)
Suppose W is a subspace of P8, and you know that it contains a linearly
independent set of 3 vectors. What can you conclude about W ?

(a) The dimension of W is at most 3.

(b) The dimension of W is exactly 3.

(c) The dimension of W is at least 3.
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Activity S.3.16 (∼5 min)
Suppose W is a subspace of P8, and you know that it contains a spanning set of
3 vectors. What can you conclude about W ?

(a) The dimension of W is at most 3.

(b) The dimension of W is exactly 3.

(c) The dimension of W is at least 3.
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