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How can we understand linear maps algebraically?
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At the end of this module, students will be able to...

Al. Linear map verification. ... determine if a map between vector spaces of
polynomials is linear or not.

A2. Linear maps and matrices. ... translate back and forth between a linear
transformation of Euclidean spaces and its standard matrix, and perform
related computations.

A3. Injectivity and surjectivity. ... determine if a given linear map is injective
and/or surjective.

A4. Kernel and Image. ... compute a basis for the kernel and a basis for the
image of a linear map.
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Readiness Assurance Outcomes
Before beginning this module, each student should be able to...

e State the definition of a spanning set, and determine if a set of Euclidean
vectors spans R"” V4.

e State the definition of linear independence, and determine if a set of Euclidean
vectors is linearly dependent or independent S1.

e State the definition of a basis, and determine if a set of Euclidean vectors is a

basis S2,S3.

e Find a basis of the solution space to a homogeneous system of linear equations
S6.
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Definition A.1.1
A linear transformation (also known as a linear map) is a map between vector
spaces that preserves the vector space operations. More precisely, if V and W are
vector spaces, amap T : V — W is called a linear transformation if

® T(v+w)=T(v)+ T(w) for any v,w € V.

® T(cv)=cT(v)foranyce R,ve V.
In other words, a map is linear when vector space operations can be applied before
or after the transformation without affecting the result.
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Definition A.1.2
Given a linear transformation T : V — W, V is called the domain of T and W is
called the co-domain of T.

Linear transformation T : R3 — R?

. codomain R2
domain R3
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Example A.1.3
Let T : R3 — R? be given by

x X—2z
(1)1
z 3y
To show that T is linear, we must verify...
X u X+ u]
T |yl +|v =T y+v = {(X +?il() __’_(5)—1— W)]
z w Z 4+ w]| y
B xfz [u—w]|  [(x+u)—(z+w)
(B o () - b s - )
And also...
x CX X — ¢z x X—2z X — cz
Tlcly =T |cy —[ ]andcT y —c[ ]—{ ]
, o 3cy S 3y 3cy

Therefore T is a linear transformation.
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Example A.1.4
Let T : R?2 — R* be given by
X+y
X x?
T =
(M) y+3
y —2%

To show that T is not linear, we only need to find one counterexample.
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Since the resulting vectors are different, T is not a linear transformation.
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N Fact A.1.5
A map between Euclidean spaces T : R" — R™ is linear exactly when every
Section]All component of the output is a linear combination of the variables of R".
Senion A3
section Ad For example, the following map is definitely linear because x — z and 3y are linear

combinations of x, y, z:

T x _|x—2z|  |Ix+0y -1z
Y1) =1 3y | = lox+3y+0z

But this map is not linear because x2, y + 3, and y — 2¥ are not linear
combinations (even though x + y is):
x+y
(b=,
T =
y y+3

y —2%



Module A

Math 237

Section A1 Activity A.1.6 (~5 min)
' ; Recall the following rules from calculus, where D : P — P is the derivative map
defined by D(f(x)) = f’(x) for each polynomial f.

D(f +g)=f'(x)+g'(x)
D(cf(x)) = cf/(x)
What can we conclude from these rules?
a) P is not a vector space

b) D is a linear map

c) D is not a linear map
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Activity A.1.7 (~10 min)
Let the polynomial maps S : P* — P3 and T : P* — P3 be defined by
S(f(x)) = 2f'(x) — f"(x) T(f(x)) = f'(x) +x3

Compute S(x* + x), S(x*) + S(x), T(x*+ x), and T(x*) + T(x). Which of these
maps is definitely not linear?
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Fact A.1.8

If L:V — W is linear, then L(z) = L(Ov) = OL(v) = z where z is the additive

identity of the vector spaces V, W.

Put another way, an easy way to prove that a map like T(f(x))
be linear is because

d
T(O):&[O]—i—x3:0—|—x3zx37§0.

f'(x) + x° can't
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Activity A.1.9 (~15 min)
Continue to consider S : P* — P3 defined by

S(F(x)) = 2f'(x) = £'(x)
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A.
s Activity A.1.9 (~15 min)
LM Continue to consider S : P* — P3 defined by

S(f(x) = 2f'(x) — £(x)
Part 1: Verify that

S(F(x) + &(x)) = 2f'(x) + 2¢'(x) — f"(x) — g"(x)

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.
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Activity A.1.9 (~15 min)
Continue to consider S : P* — P3 defined by

S(f(x) = 2f'(x) — £(x)
Part 1: Verify that
S(f(x) + &(x)) = 2f'(x) +28"(x) = "(x) — g"(x)

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.
Part 2: Verify that S(cf(x)) is equal to cS(f(x)) for all real numbers ¢ and
polynomials f. Is S linear?
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Activity A.1.10 (~20 min)
Let the polynomial maps S: P — P and T : P — P be defined by

S(f(x)) = (f(x))? T(f(x)) = 3xf(x°)
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Activity A.1.10 (~20 min)
Let the polynomial maps S: P — P and T : P — P be defined by

S(f(x)) = (f(x))? T(f(x)) = 3xf(x?)
Part 1: Show that S(x + 1) # S(x) + S(1) to verify that S is not linear.
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Activity A.1.10 (~20 min)
Let the polynomial maps S: P — P and T : P — P be defined by

S(f(x)) = (f(x))? T(f(x)) = 3xf(x°)

Part 1: Show that S(x + 1) # S(x) + S(1) to verify that S is not linear.
Part 2: Prove that T is linear by verifying that

T(f(x) + &(x)) = T(f(x)) + T(g(x)) and T(cf(x)) = cT(f(x)).
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Observation A.1.11
Note that S in the previous activity is not linear, even though S(0) = (0)?> = 0. So
showing S(0) = 0 isn't enough to prove a map is linear.

This is a similar situation to proving a subset is a subspace: if the subset doesn’t
contain z, then the subset isn't a subspace. But if the subset contains z, you
cannot conclude anything.
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Remark A.2.1
Recall that a linear map T : V — W satisfies

® T(v+w)=T(v)+ T(w) for any v,w € V.

® T(cv)=cT(v)foranyceR,ve V.
In other words, a map is linear when vecor space operations can be applied before
or after the transformation without affecting the result.
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Activity A.2.2 (~5 min)

Suppose T : R3 — R? is a linear map, and you know T (|:

B)-r(d)

0
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Activity A.2.3 (~3 min)

Suppose T : R3 — R? is a linear map, and you know T (|:

)61 ()

0
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Activity A.2.4 (~2 min)

Suppose T : R3 — R? is a linear map, and you know T (|:

2] e ([3])

0
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Activity A.2.5 (~5 min)
1

Suppose T : R3 — R? is a linear map, and you know T 0 — [ﬂ and
0
0 J—
T |(0]]|= [ 5 ] Do you have enough information to compute T (v) for any
1

v e R%?

(a) Yes.

(b) No, exactly one more piece of information is needed.
(

c) No, an infinite amount of information would be necessary to compute the
transformation of infinitely-many vectors.
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S Fact A.2.6
Consider any basis {b1,...,b,} for V. Since every vector v can be written
uniquely as a linear combination of basis vectors, x1b; + - - - + x,b,, we may

compute T (v) as follows:

T(V) = T(lel + -+ ann) = X1 T(bl) + -+ Xp T(bn)

Therefore any linear transformation T : V — W can be defined by just describing

the values of T(b;).
Put another way, the images of the basis vectors determine the transformation T.
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Definition A.2.7

Since linear transformation T : R” — R™ is determined by the standard basis
{e1,...,ey}, it's convenient to store this information in the m x n standard
matrix [T(e1) --- T(ep)].

For example, let T : R3 — R? be the linear map determined by the following values
for T applied to the standard basis of R3.

reor({)- re-r({)-L ror(E) -

Then the standard matrix corresponding to T is

ey Tl T =[5 3 o).
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Activity A.2.8 (~3 min)

Let T : R* — R3 be the linear transformation given by

0
T(el) = 3 T(62) =
—2

Write the standard matrix [T(e1) - -

2
T(E4) =10
0
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Activity A.2.9 (~5 min)
Let T : R3 — R? be the linear transformation given by

T X _ x+ 3z
)z/ C|2x—y — 4z

Find the standard matrix for T.
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Py Fact A.2.10
Because every linear map T : R™ — R” has a linear combination of the variables in
each component, and thus T (e;) yields exactly the coefficients of x;, the standard
matrix for T is simply an ordered list of the coefficients of the x;:

ax + by + cz + dw A_|? b ¢ d
ex + fy + gz + hw -

-
S N X X
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S Activity A.2.11 (~5 min)
Let T : R3 — R3 be the linear transformation given by the standard matrix

3 -2 -1
4 5 2
0 -2 1

Compute T | |y
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S Activity A.2.12 (~5 min)
Let T : R3 — R3 be the linear transformation given by the standard matrix

3 -2 -1
4 5 2
0 -2 1

Compute T | |2
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Math 237 To quickly compute T(v) from its standard matrix A, compute the dot product
(defined in Calculus 3) of each matrix row with the vector. For example, if T has

St AL the standard matrix

EHES 12 3
Section A.4 A= 10 1 )
2 -1 0
X
then for v= [y | we will write
z
1 2 3 X Ix+2y + 3z
T(vy=Av=1|0 1 =2 |y|=|0x+1y—2z
2 -1 0 z 2x — 1y 4+ 0z
3
and forv= | 0 | we will write
-2
1 2 3 3 1(3) +2(0) + 3(—2) -3
T(v)=Av=1|0 1 =2 0| =103)4+10)—-2(-2)| = | 4
2 -1 0 -2 2(3) — 1(0) + 0(—2) 6
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Activity A.2.14 (~15 min)

! Compute the following linear transformations of vectors given their standard
Section A.1

Section A2 matrices.

Py 4 3
1] : 0 -1
Ty ([2 ) for the standard matrix A; = 11
3 0
1
T2 (1) for the standard matrix Ay = [111 i’ g _01]
-3
: 0 13
T3 | |—2 for the standard matrix Az = & 1 1
0 3 0 0
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Let T : V — W be a linear transformation. T is called injective or one-to-one if
e T does not map two distinct vectors to the same place. More precisely, T is
Secton A4 injective if T(v) # T(w) whenever v # w.

: "

injective
T(v) = T(w)

e
Lo

not injective
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Section A4 Activity A.3.2 (~3 min)
Let T : R® — R? be given by

X
T| |y = [X] with standard matrix [(1) (1) 8}

Show that T is not injective by finding two different vectors v,w € R3 such that
T(v) = T(w).
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Activity A.3.3 (~2 min)
Let T : R2 — R3 be given by

X 1
T <[X}> = |y with standard matrix |0
Y 0 0

o = O

Is T injective? If not, find two different vectors v,w € R3 such that T(v) = T(w).
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Section A.2 Definition A.3.4

Section A.3
Section A.4

Let T:V — W be a linear transformation. T is called surjective or onto if every

element of W is mapped to by an element of V. More precisely, for every w € W,
there is some v € V with T(v) = w.

surjective not surjective
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Activity A.3.5 (~3 min)
Let T : R? — R3 be given by

o =
= O

X
T <[X}> = |y with standard matrix
Y 0

o

Show that T is not surjective by finding a vector in R3 that T <[;

equal.

) can never
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secion A3 Activity A.3.6 (~2 min)
Let T :R3 — R? be given by

X
T |y = [;] with standard matrix [é (1) 8}
z
X
Is T surjective? If not, find a vector in R? that T | |y can never equal.

V4
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Secion A2 Observation A.3.7
Y As we will see, it's no coincidence that the RREF of the injective map’s standard
matrix
10
01
00

has all pivot columns. Similarly, the RREF of the surjective map's standard matrix
1 00
010

has a pivot in each row.
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e Definition A.3.8
Section A.3

PO Let T : V — W be a linear transformation. The kernel of T is an important
subspace of V defined by

ker T={veV|T(v)=z}

ker T
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Activity A.3.9 (~5 min)
S Let T : R? — RR3 be given by
Section A.3
Section A.4
. X 1 0
T <[ }) =y with standard matrix |0 1
Y 0 00

Which of these subspaces of R? describes ker T, the set of all vectors that
transform into 07

a){[j] aeR}




Mede A Activity A.3.10 (~5 min)
Math 237 Let T : R® — R? be given by

Section A.1 X 1 0 0

Section A.2 X . .

Secion A3 Tl |y = [ ] with standard matrix [0 1 0}
Which of these subspaces of R3 describes ker T, the set of all vectors that
transform into 07

0

a) 0| |aeR
—a—
-

b) al|laeR
—0—
o

c) 0
—O—
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S Activity A.3.11 (~10 min)
Section A.3 . . . .
Section A4 Let T : R3 — R? be the linear transformation given by the standard matrix

3 4 -1
A_[l 2 1]'
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SZ!ZL’%E Activity A.3.11 (~10 min)
Section A4 Let T : R3 — R? be the linear transformation given by the standard matrix
3 4 —1
A= [1 2 1 ] '
part st T [ |y | = [7F 7 7] =[] tofind o tem of equati
art 1: Se )Z/ =124+ 74 7| = |o] tofind a linear system of equations

whose solution set is the kernel.
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Section A.1

Secion A2 Activity A.3.11 (~10 min)
Secton A4 Let T : R3 — R? be the linear transformation given by the standard matrix
3 4 —1
A= [1 2 1 ] '
part st T [ |y | = [7F 7 7] =[] tofind o tem of equati
art 1: Se )Z/ =124+ 74 7| = |o] tofind a linear system of equations

whose solution set is the kernel.
Part 2: Use RREF(A) to solve this homogeneous system of equations and find a
basis for the kernel of T.
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Section A.1

Definition A.3.12
Section A.2

P Let T:V — W be a linear transformation. The image of T is an important
section A4 subspace of W defined by

Im T = {w € W | there is some v € V with T(v) = w}

In the examples below, the left example’s image is all of R?, but the right
example’s image is a planar subspace of R3.

e WOk e
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Math 237 Let T:R2 — R3 be given by

Section A.1 x X 1
St T <[ }) = |y with standard matrix |0
Section A.4 y O O

O = O

Which of these subspaces of R3 describes Im T, the set of all vectors that are the
result of using T to transform R? vectors?

a) 0 laeR

a
b) { |b| |a,beR
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Activity A.3.14 (~5 min)

o Let T : R3 — R? be given by
s
X
. . 1
T )Z/ = [;] with standard matrix [0 (1) 8}

Which of these subspaces of R? describes Im T, the set of all vectors that are the
result of using T to transform R3 vectors?

o {[7]]ox)
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Activity A.3.15 (~5 min)
Let T : R* — R3 be the linear transformation given by the standard matrix

7
0 2| =[T(e1) T(e2) T(es) T(es)].
3

a) spans Im T
b) is a linearly independent subset of Im T

c) is a basis for Im T
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Let T : R* — R3 be the linear transformation given by the standard matrix

Section A.1

Section A2 3 47 1
Section A.3
Section A.4 A = —1 1 O 2
2 1 3 -1
Since the set ] ! } spans Im T, we can obtain a basis for
1 01
Im T by finding RREFA= |0 1 1 and only using the vectors
0 00O
corresponding to pivot columns:
3 4
-1],|1
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Section A.1
Section A.2
Section A.3
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Fact A.3.17
Let T :R"” — R™ be a linear transformation with standard matrix A.

e The kernel of T is the solution set of the homogeneous system given by the
augmented matrix [A ‘ O]. Use the coefficients of its free variables to get a
basis for the kernel.

e The image of T is the span of the columns of A. Remove the vectors creating
non-pivot columns in RREF A to get a basis for the image.
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Section A.1
Section A.2
Section A.3

s Activity A.3.18 (~10 min)
Let T : R3 — R* be the linear transformation given by the standard matrix

1 -3
2 —6
0 O
-1 3

A=

= = O DN

Find a basis for the kernel and a basis for the image of T.
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Section A.4

Observation A.4.1
Let T:V — W. We have previously defined the following terms.

e T is called injective or one-to-one if T does not map two distinct vectors to
the same place.

e T is called surjective or onto if every element of W is mapped to by some
element of V.

e The kernel of T is the set of all vectors in V that are mapped toz € W. ltis
a subspace of V.

e The image of T is the set of all vectors in W that are mapped to by
something in V. It is a subspace of W.
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Activity A.4.2 (~5 min)
Let T : V — W be a linear transformation where ker T contains multiple vectors.
What can you conclude?

(a) T is injective
(b)
(c) T is surjective
(d)

T is not injective

T is not surjective
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Fact A.4.3
A linear transformation T is injective if and only if ker T = {0}. Put another way,
an injective linear transformation may be recognized by its trivial kernel.

v S T(w
0 T2V)
Ak T(0)=0 41
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Activity A.4.4 (~5 min)
Let T :R> — RR® be a linear transformation where Im T is spanned by four vectors.
What can you conclude?

(a) T is injective
(b)
(c) T is surjective
(d)

T is not injective

T is not surjective



Module A

Math 237
Module A
Section A.1

Section A.2 Fact A.4.5

Section A.3
A linear transformation T : V — W is surjective if and only if Im T = W. Put

Section A.4
another way, a surjective linear transformation may be recognized by its identical
codomain and image.

e WOk e

surjective, Im T = R? not surjective, Im T # R3
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Activity A.4.6 (~15 min)
B Let T : R” — R™ be a linear map with standard matrix A. Sort the following
iy v claims into two groups of equivalent statements: one group that means T is

injective, and one group that means T is surjective.

(a) The kernel of T is trivial: (f) The image of T equals its
ker T = {0}. codomain: Im T = R™.
(b) The columns of A span R™. (g) The system of linear equations given
(c) The columns of A are linearly by the augmented matrix [A | b]
independent. has a solution for all b € R™.
(d) Every column of RREF(A) has a (h) The system of linear equations

pivot. given by the augmented matrix

(e) Every row of RREF(A) has a pivot. (A ‘ 0] has exactly one solution.
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Observation A.4.7
The easiest way to show that the linear map with standard matrix A is injective is
to show that RREF(A) has all pivot columns.

The easiest way to show that the linear map with standard matrix A is surjective is
to show that RREF(A) has all pivot rows.
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Activity A.4.8 (~3 min)
What can you immediately conclude about the linear map T : R® — R3?

a) lIts standard matrix has more columns than rows, so T is not injective.
b)
c) Its standard matrix has more rows than columns, so T is not surjective.
d)

Its standard matrix has more columns than rows, so T is injective.

Its standard matrix has more rows than columns, so T is surjective.
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Section A.1
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Section A.3
Section A.4

Activity A.4.9 (~2 min)
What can you immediately conclude about the linear map T : R> — R7?

a) lIts standard matrix has more columns than rows, so T is not injective.
b)
c) Its standard matrix has more rows than columns, so T is not surjective.
d)

Its standard matrix has more columns than rows, so T is injective.

Its standard matrix has more rows than columns, so T is surjective.
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Section A.1
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Section A.3
Section A.4

Fact A.4.10
The following are true for any linear map 7 : V — W:

e If dim(V) > dim(W), then T is not injective.
e If dim(V) < dim(W), then T is not surjective.

Basically, a linear transformation cannot reduce dimension without collapsing
vectors into each other, and a linear transformation cannot increase the dimension
of its image.

T(v) = T(w) T
W P A
v
not injective, 3 > 2 not surjective, 2 < 3

But dimension arguments cannot be used to prove a map is injective or surjective.
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Definition A.4.11
If T:V — W is both injective and surjective, it is called bijective.
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Activity A.4.12 (~5 min)
Let T : R” — R™ be a bijective linear map with standard matrix A. Label each of
the following as true or false.

(a) The columns of A form a basis for R™
(b) RREF(A) is the identity matrix.

(c) The system of linear equations given by the augmented matrix [A | b] has
exactly one solution for all b € R™.
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Observation A.4.13
The easiest way to show that the linear map with standard matrix A is bijective is
to show that RREF(A) is the identity matrix.
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el Activity A.4.14 (~3 min)
coen Let T:R®— R3 be given by the standard matrix
2 1 —1
A=14 1 1
6 2 1

Which of the following must be true?
(a) T is neither injective nor surjective
(b)

(c) T is surjective but not injective
(d)

T is injective but not surjective

T is bijective.
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Activity A.4.15 (~3 min)
Let T : R3 — R3 be given by

Which of the following must be true?
(a) T is neither injective nor surjective
(b) T is injective but not surjective
(c) T is surjective but not injective
(d)

d) T is bijective.

2x+y—z
Ix+y+z
6x + 2y
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Secion A1 Activity A.4.16 (~3 min)
section A3 Let T : R? — R3 be given by

< [x} ) 2x + 3y
T =| x—y
4 x + 3y
Which of the following must be true?

(a) T is neither injective nor surjective

(b)

(c) T is surjective but not injective
(d)

T is injective but not surjective

T is bijective.
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Activity A.4.17 (~3 min)
won. Let T:R® — R? be given by
N 2x + y—z
! )z/ B [4X +y+ Z:| '

Which of the following must be true?
(a) T is neither injective nor surjective
(b)

(c) T is surjective but not injective
(d)

T is injective but not surjective

T is bijective.
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Section A.1
Section A.2
Section A.3
Section A.4

Observation A.4.18
For T : R"” — R™ where n = m, exactly one of these must hold:

e T is bijective.
e T is neither injective nor surjective

For T : R"” — R™ where n < m, exactly one of these must hold:
e T is injective, but not surjective
e T is neither injective nor surjective

For T : R"” — R™ where n > m, exactly one of these must hold:
e T is surjective, but not injective

e T is neither injective nor surjective
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