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In geology, a phase is any physically separable material in the system, such as
various minerals or liquids.

A component is a chemical compound necessary to make up the phases; for
historical reasons these are usually oxides such as Calcium Oxide (CaO) or Silicone
Dioxide (SiO2).

In a typical problem, a geologist knows how to build each phase from the
components, and is interested in determining reactions among the different phases.
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Activity P.1.2 (∼5 min)
Consider the 3 components c1 = CaO, c2 = MgO, and c3 = SiO2, and the 5
phases

p1 = Ca3MgSi2O8 p2 = CaMgSiO4 p3 = CaSiO3

p4 = CaMgSi2O6 p5 = Ca2MgSi2O7

Geologists will know

p1 = 3c1 + c2 + 2c3 p2 = c1 + c2 + c3 p3 = c1 + 0c2 + c3

p4 = c1 + c2 + 2c3 p5 = 2c1 + c2 + 2c3

or more compactly,

p1 =

3
1
2

 ,p2 =

1
1
1

 ,p3 =

1
0
1

 ,p4 =

1
1
2

 ,p5 =

2
1
2

 .
Determine if the 5 phases are linearly dependent or linearly independent.
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Activity P.1.3 (∼15 min)
Recall our five phases:

p1 = 3c1 + c2 + 2c3 p2 = c1 + c2 + c3 p3 = c1 + 0c2 + c3

p4 = c1 + c2 + 2c3 p5 = 2c1 + c2 + 2c3

or more compactly,

p1 =

3
1
2

 ,p2 =

1
1
1

 ,p3 =

1
0
1

 ,p4 =

1
1
2

 ,p5 =

2
1
2

 .
Geologists want to find chemical reactions among the 5 phases; that is, they want
to find numbers x1, x2, x3, x4, x5 such that

x1p1 + x2p2 + x3p3 + x4p4 + x5p5 = 0.

Part 1: Set up a system of equations that gives these chemical equations.
Part 2: Find a basis for the solution set.
Part 3: Interpret each basis vector as a chemical equation.
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x1p1 + x2p2 + x3p3 + x4p4 + x5p5 = 0.
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Part 2: Find a basis for the solution set.
Part 3: Interpret each basis vector as a chemical equation.
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Activity P.1.4 (∼10 min)

We found two basis vector


−1
2
2
−1
0

 and


0
1
1
0
−1

, corresponding to two chemical

equations

2p2 + 2p3 = p1 + p4 2CaMgSiO4 + 2CaSiO3 = Ca3MgSi2O8 + CaMgSi2O6

p2 + p3 = p5 CaMgSiO4 + CaSiO3 = Ca2MgSi2O7

Find a chemical equation among the five phases that does not involve
p2 = CaMgSiO4.
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Activity P.2.1 (∼10 min)
A $700,000,000,000 Problem:

In the picture below, each circle represents a webpage, and each arrow represents a
link from one page to another.

1

2 3

4 5 6

7

Based on how these pages link to each other, write a list of the 7 webpages in
order from most imptorant to least important.
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Observation P.2.2
The $700,000,000,000 Idea:

Links are endorsements.

1 A webpage is important if it is linked to (endorsed) by important pages.

2 A webpage distributes its importance equally among all the pages it links to
(endorses).
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Example P.2.3
Consider this small network with only three pages. Let x1, x2, x3 be the importance
of the three pages respectively.

1

2 3

1 x1 splits its endorsement in half
between x2 and x3

2 x2 sends all of its endorsement to x1

3 x3 sends all of its endorsement to
x2.

This corresponds to the page rank
system

x2 =x1
1

2
x1 +x3 =x2

1

2
x1 =x3
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Observation P.2.4

1

2 3

x2 =x1
1

2
x1 +x3 =x2

1

2
x1 =x3

0 1 0
1
2 0 1

2
1
2 0 0

x1x2
x3

 =

x1x2
x3


By writing this linear system in terms of matrix multiplication, we obtain the page

rank matrix A =

0 1 0
1
2 0 1
1
2 0 0

 and page rank vector x =

x1x2
x3

.

Thus, computing the importance of pages on a network is equivalent to solving the
matrix equation Ax = 1x.
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Activity P.2.5 (∼5 min)
Thus, our $700,000,000,000 problem is what kind of problem?0 1 0

1
2 0 1

2
1
2 0 0

x1x2
x3

 = 1

x1x2
x3


(a) An antiderivative problem

(b) A bijection problem

(c) A cofactoring problem

(d) A determinant problem

(e) An eigenvector problem



Module P

Math 237

Module P

Section P.1

Section P.2

Section P.3

Section P.4

Activity P.2.6 (∼10 min)
Find a page rank vector x satisfying Ax = 1x for the following network’s page rank
matrix A.
That is, find the eigenspace associated with λ = 1 for the matrix A, and choose a
vector from that eigenspace.

1

2 3

A =

0 1 0
1
2 0 1
1
2 0 0


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Observation P.2.7

Row-reducing A− I =

−1 1 0
1
2 −1 1
1
2 0 −1

 ∼
1 0 −2

0 1 −2
0 0 0

 yields the basic

eigenvector

2
2
1

.

Therefore, we may conclude that pages 1 and 2 are equally important, and both
pages are twice as important as page 3.

1

2 3
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Activity P.2.8 (∼5 min)
Compute the 7× 7 page rank matrix for the following network.

1

2 3

4 5 6

7

For example, since website 1 distributes its endorsement equally between 2 and 4,

the first column is



0
1
2
0
1
2
0
0
0


.
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Activity P.2.9 (∼10 min)
Find a page rank vector for the given page rank matrix.

1

2 3

4 5 6

7

A =



0 1
2 0 0 0 0 0

1
2 0 0 1 0 0 1

2
0 1

2 0 0 0 0 0
1
2 0 1

2 0 0 0 1
2

0 0 0 0 0 1
2 0

0 0 0 0 1
2 0 0

0 0 1
2 0 1

2
1
2 0


Which webpage is most important?
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Observation P.2.10
Since a page rank vector for the network is given by x, it’s reasonable to consider
page 2 as the most important page.

1

2 3

4 5 6

7

x =



2
4
2

2.5
0
0
1



Based upon this page rank vector, here is a complete ranking of all seven pages
from most important to least important:

2, 4, 1, 3, 7, 5, 6
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Activity P.2.11 (∼10 min)
Given the following diagram, use a page rank vector to rank the pages 1 through 7
in order from most important to least important.

1 2 3 4

5 6 7
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Example P.3.1
In engineering, a truss is a structure designed from several beams of material called
struts, assembled to behave as a single object.
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Activity P.3.2 (∼5 min)
Consider the representation of a simple truss pictured below. All of the seven struts
are of equal length, affixed to two anchor points applying a normal force to nodes
C and E , and with a 10000N load applied to the node given by D.

C

A

D

B

E

Which of the following must hold for the truss to be stable?

a) All of the struts will experience compression.

b) All of the struts will experience tension.

c) Some of the struts will be compressed, but others will be tensioned.
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Observation P.3.3
Since the forces must balance at each node for the truss to be stable, some of the
struts will be compressed, while others will be tensioned.

C

A

D

B

E

By finding vector equations that must hold at each node, we may determine many
of the forces at play.
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Remark P.3.4
For example, at the bottom left node there are 3 forces acting.

C

A

D

B

E

Let FCA be the force on C given by the compression/tension of the strut CA, let
FCD be defined similarly, and let NC be the normal force of the anchor point on C .

For the truss to be stable, we must have

FCA + FCD + NC = 0.
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Activity P.3.5 (∼10 min)
Using the conventions of the previous slide, and where L represents the load vector
on node D, find four more vector equations that must be satisfied for each of the
other four nodes of the truss.

C

A

D

B

E

A : ?

B : ?

C : FCA + FCD + NC = 0

D : ?

E : ?
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Remark P.3.6
The five vector equations may be written as follows.

C

A

D

B

E

A : FAC + FAD + FAB = 0

B : FBA + FBD + FBE = 0

C : FCA + FCD + NC = 0

D : FDC + FDA + FDB + FDE + L = 0

E : FEB + FED + NE = 0



Module P

Math 237

Module P

Section P.1

Section P.2

Section P.3

Section P.4

Observation P.3.7

C

A

D

B

E

Each vector has a vertical and horizontal component, so it may be treated as a
vector in R2. Note that FCA must have the same magnitude (but opposite
direction) as FAC .

FCA = x

[
cos(60◦)
sin(60◦)

]
= x

[
1/2√
3/2

]

FAC = x

[
cos(−120◦)
sin(−120◦)

]
= x

[
−1/2

−
√

3/2

]



Module P

Math 237

Module P

Section P.1

Section P.2

Section P.3

Section P.4

Activity P.3.8 (∼5 min)
To write a linear system that models the truss under consideration with constant
load 10000 newtons, how many variables will be required?

C

A

D

B

E

a) 7: 5 from the nodes, 2 from the anchors

b) 9: 7 from the struts, 2 from the anchors

c) 11: 7 from the struts, 4 from the anchors

d) 12: 7 from the struts, 4 from the anchors, 1 from the load

e) 13: 5 from the nodes, 7 from the struts, 1 from the load
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Observation P.3.9
Since the angles for each strut are known, one variable may be used to represent
each.

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

For example:

FAB = −FBA = x1

[
cos(0)
sin(0)

]
= x1

[
1
0

]
FBE = −FEB = x5

[
cos(−60◦)
sin(−60◦)

]
= x5

[
1/2

−
√

3/2

]
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Observation P.3.10
Since the angle of the normal forces for each anchor point are unknown, two
variables may be used to represent each.

C

A

D

B

E

NC =

[
y1
y2

]
ND =

[
z1
z2

]
The load vector is constant.

L =

[
0

−10000

]
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Remark P.3.11
Each of the five vector equations found previously represent two linear equations:
one for the horizontal component and one for the vertical.

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

C : FCA + FCD + NC = 0

⇔ x2

[
cos(60◦)
sin(60◦)

]
+ x6

[
cos(0◦)
sin(0◦)

]
+

[
y1
y2

]
=

[
0
0

]
Using the approximation

√
3/2 ≈ 0.866, we have

⇔ x2

[
0.5

0.866

]
+ x6

[
1
0

]
+ y1

[
1
0

]
+ y2

[
0
1

]
=

[
0
0

]
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Activity P.3.12 (∼10 min)
Expand the vector equation given below using sine and cosine of appropriate
angles, then compute each component (approximating

√
3/2 ≈ 0.866).

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

D : FDA + FDB + FDC + FDE = −L

⇔ x3

[
cos( ? )
sin( ? )

]
+ x4

[
cos( ? )
sin( ? )

]
+ x6

[
cos( ? )
sin( ? )

]
+ x7

[
cos( ? )
sin( ? )

]
=

[
?
?

]
⇔ x3

[
?
?

]
+ x4

[
?
?

]
+ x6

[
?
?

]
+ x7

[
?
?

]
=

[
?
?

]
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Observation P.3.13
The full augmented matrix given by the ten equations in this linear system is given
below, where the elevent columns correspond to x1, . . . , x7, y1, y2, z1, z2, and the
ten rows correspond to the horizontal and vertical components of the forces acting
at A, . . . ,E .



1 −0.5 0.5 0 0 0 0 0 0 0 0 0
0 −0.866 −0.866 0 0 0 0 0 0 0 0 0
−1 0 0 −0.5 0.5 0 0 0 0 0 0 0
0 0 0 −0.866 −0.866 0 0 0 0 0 0 0
0 0.5 0 0 0 1 0 1 0 0 0 0
0 0.866 0 0 0 0 0 0 1 0 0 0
0 0 −0.5 0.5 0 −1 1 0 0 0 0 0
0 0 0.866 0.866 0 0 0 0 0 0 0 10000
0 0 0 0 −0.5 0 −1 0 0 1 0 0
0 0 0 0 0.866 0 0 0 0 0 1 0


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Observation P.3.14
This matrix row-reduces to the following.

∼



1 0 0 0 0 0 0 0 0 0 0 −5773.7
0 1 0 0 0 0 0 0 0 0 0 −5773.7
0 0 1 0 0 0 0 0 0 0 0 5773.7
0 0 0 1 0 0 0 0 0 0 0 5773.7
0 0 0 0 1 0 0 0 0 0 0 −5773.7
0 0 0 0 0 1 0 0 0 −1 0 2886.8
0 0 0 0 0 0 1 0 0 −1 0 2886.8
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 5000
0 0 0 0 0 0 0 0 0 0 1 5000


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Observation P.3.15

C

A

D

B

E

Thus we know the truss must satisfy the following conditions.

x1 = x2 = x5 = −5882.4

x3 = x4 = 5882.4

x6 = x7 = 2886.8 + z1

y1 = −z1
y2 = z2 = 5000

In particular, the negative x1, x2, x5 represent tension (forces pointing into the
nodes), and the postive x3, x4 represent compression (forces pointing out of the
nodes). The vertical normal forces y2 + z2 counteract the 10000 load.
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Definition P.4.1
Cryptography is the practice and study of encoding messages so that only the
intended receiver can decode them.
For example, the ROT13 cipher both encodes and decodes messages by shifting
each letter thirteen places in the alphabet, cycling from Z back to A. This may be
accomplished by converting each letter to a number

A ≡ 1, B ≡ 2, . . . , Y ≡ 25, Z ≡ 0

and adding 13 (modulo 26):

HELLO ≡


8
5

12
12
15

 ↔
ROT13


21
18
25
25
2

 ≡ URYYB
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Activity P.4.2 (∼10 min)
Suppose your instructor saw another student passing a note that said

MFUT DIFBU PO UIF UFTU

How could the instructor decode this message, taking advantage of the fact that
THE is one of the most commonly used words in the English language?
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Observation P.4.3
Frequency analysis is a common tool used in breaking substitution ciphers that
simply substitute letters for other letters. In the message

MFUT DIFBU PO UIF UFTU

the common word THE is encoded as UIF, and the most common letters in the
English language E,T match the most common letters used in this message: F,U.

This suggests the following partial decryption:

-ET- -HE-T -- THE TE-T

By considering the context, or the fact that all letters were shifted the same
amount, or perhaps by an analysis of other messages sent using the same code, the
completed message may be revealed:

LETS CHEAT ON THE TEST



Module P

Math 237

Module P

Section P.1

Section P.2

Section P.3

Section P.4

Remark P.4.4
To defeat naive frequency analysis attacks, one method that may be used is to
create a rule that converts groups of letters into new groups of letters, rather than
converting single letters individually.

So to send the message

LETS CHEAT ON THE TEST

one might first break it into three-letter pieces.

LET SCH EAT ONT HET EST
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Remark P.4.5
Each piece then may be converted to a Euclidean vector in R3, which may be
linearly transformed by multiplying by a matrix A with det(A) = 1 = det(A−1).

For A =

 3 −2 −3
−2 3 0
−1 0 2

:

LET ≡

12
5

20

→
 3 −2 −3
−2 3 0
−1 0 2

12
5

20

 =

−34
−9
28


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Remark P.4.6
The resulting vector may be converted back into English letters by adding multiples
of 26 to each component to obtain numbers between 0 and 25.−34

−9
28

 ≡
−34 + 52
−9 + 26
28− 26

 =

18
17
2

 ≡ RPB



Module P

Math 237

Module P

Section P.1

Section P.2

Section P.3

Section P.4

Observation P.4.7
This process may be done all at once by converting the entire message into a
matrix:

LET SCH ... ≡

12 19
5 3 . . .

20 8


→

 3 −2 −3
−2 3 0
−1 0 2

12 19
5 3 . . .

20 8

 =

−34 27
−9 −29 . . .
28 −3


≡

18 1
17 23 . . .
2 23

 ≡ RQB AVV ...
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Activity P.4.8 (∼10 min)
Complete the following encoding of the entire message given below, using the

encoding matrix A =

 3 −2 −3
−2 3 0
−1 0 2

.

LET SCH EAT ONT HET EST ≡

12 19
5 3 . . .

20 8



→

 3 −2 −3
−2 3 0
−1 0 2

12 19
5 3 . . .

20 8

 =

−34 27
−9 −29 . . .
28 −3


≡

18 1
17 23 . . .
2 23

 ≡ RQB AWW ESI ILY FYF UUI
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Activity P.4.9 (∼10 min)

Reverse this process by using the decoding matrix, A−1 =

6 4 9
4 3 6
3 2 5

.

RQB AWW ESI ILY FYF UUI ≡

18 1
17 23 . . .
2 23



→

6 4 9
4 3 6
3 2 5

18 1
17 23 . . .
2 23

 =

194 305
135 211 . . .
98 164


≡

12 19
5 3 . . .

20 8

 ≡ LET SCH EAT ONT HET EST
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