	MA	126	-	Spring 2017	— Рı	rof.	Clontz	-	Standard Assessment 2	
				Assi		•				_
Name:				11/150	ve/ 5					

- Each question is prefaced with a Standard for this course.
- When grading, each response will be marked as follows:
 - $-\checkmark$: The response is demonstrates complete understanding of the Standard.
 - *: The response may indicate full understanding of the Standard, but clarification or minor corrections are required.
 - \times : The response does not demonstrate complete understanding of the Standard.
- Only responses marked with a ✓ mark count toward your grade for the semester. Visit the course website for more information on how to improve * and × marks.
- \bullet This Assessment is due after 50 minutes. All blank responses will be marked with \times .

C01: This student is able to...

Derive properties of the logarithmic and exponential functions from their definitions.

Mark:

(Instructor Use Only)

Show that $5^2=25$ follows from the definition $a^x=\exp(x\ln(a))$. (Hint: Use the fact that $\ln(z)+\ln(z)=\ln(z\times z)$.)

$$5^{2} = \exp(2\ln(5))$$

$$= \exp(\ln(5) + \ln(5))$$

$$= \exp(\ln(5 \cdot 5))$$

$$= 5.5$$

$$= 7.5$$
B

C02: This student is able to... Prove hyperbolic function identities.

Mark:

(Instructor Use Only)

Use the definition

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

to prove the following identity.

$$\cosh(2x) = 2\cosh^{2}(x) - 1$$

$$\cosh(2x) = \frac{2\cosh^{2}(x) - 1}{2}$$

$$-2\cosh^{2}(x) - 1$$

$$-2\cosh^{2}(x) -$$

C03: This student is able to...
Use integration by substitution.

(Instructor Uso Only)

 $= \int_{0}^{1} \left(u^{3/2} + 7u^{2/2} \right) du$ $= \left(\frac{2}{5} u^{5/2} + \frac{4}{3} u^{3/2} \right) du$

S01: This student is able to...

Find derivatives and integrals involving logrithmic and exponential functions.

Mark:

(Instructor Use Only

a) Find $\frac{d}{dz}[\ln(3e^z)]$.

= 3/2 (3/2) = [] (OR)

$$= \frac{1}{\sqrt{2}}(1_{1}(3) + 1_{1}(e^{2}))$$

$$= \frac{1}{\sqrt{2}}(1_{1}(3) + 1_{2}(e^{2}))$$

$$= 0 + 1$$

$$= 0 + 1$$

b) Find $\int \left(2e + \frac{3}{y}\right) dy$.

S02: This student is able to...
Find derivatives and integrals involving hypberbolic functions.

(Instructor Use Only)

a) Find $\frac{d}{dv}[4\tanh(3v) - \sinh(v^2)]$.

=
$$4 \operatorname{sech}^{2}(3v)(3) - \cosh(v^{2})(2v)$$

= $12 \operatorname{sech}^{2}(3v) - 2v \cosh(v^{2})$

b) Find $\int (\cosh(x) + 2\sinh(x)) dx$. $= \int \sinh(x) + 2\cosh(x) + C$

S03: This student is able to...

Integrate products of trigonometric functions.

Mark:

(Instructor Uso Only)

Find $\int \sin^3(\theta) \cos^3(\theta) d\theta$.

$$= \int (|-u^{2})u^{3}(-du)$$

$$= \int (u^{5} - u^{3})du$$

$$= \frac{1}{6}u^{6} - \frac{1}{4}u^{4} + C$$

$$= \frac{1}{6}\cos^{6}\theta - \frac{1}{4}\cos^{4}\theta + C$$

$$= \int \sin^3 \theta \cos^2 \theta \cos^2 \theta \cos^2 \theta d\theta$$

$$= \int \sin^3 \theta (1-\sin^2 \theta) \cos^2 \theta d\theta$$

$$= \int u^3 (1-u^2) du$$

$$= \int (u^3 - u^5) du$$

$$= \frac{1}{4} \sin^4 \theta - \frac{1}{6} \sin^4 \theta + C$$

S04: This student is able to... Use trigonometric substitution.

Mark:

distructor Use Only)

Find $\int \frac{2}{1+4x^2} dx$.

Let 1+4x2= |+ ten24= sec24 4x2=ten24 2x=ten24 2x=ten24 2x=fen4 > 0=ten4(2x) 2dx=sec24d0

 $= \int \frac{1}{54\pi^{26}} \int \frac{1}{5\pi^{26}} \int \frac{1}{6\pi^{2}} \int \frac{1}{6\pi^{2}}$

S05: This student is able to...

Use partial fractions to integrate rational functions.

Mark:

(Instructor Use Only)

a) Complete the following partial fraction expansion:

$$\frac{f(x)}{(x+3)^3(x^2+7)^2} = \frac{A}{\times \frac{1}{3}} + \frac{B}{\left(\frac{1}{3}\right)^2} + \frac{C}{\left(\frac{1}{3}\right)^3} + \frac{Dx+E}{\times^{2+7}} + \frac{Fx+G}{\left(\frac{1}{3}\right)^3}$$

(Assume the degree of f is less than 7. You do NOT need to solve for A through G.)

b) Find $\int \frac{8x^2-6x+14}{(x-1)(x^2+7)} dx$.

$$\frac{8x^{2}-6x+14}{(x-1)(x^{2}+7)} = \frac{A}{x-1} + \frac{Bx+C}{x^{2}+7}$$

$$9x^{2}-6x+14 = A(x^{2}+7) + (Bx+C)(x-1)$$

$$\frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

Use this space if you need extra room for a problem: