\( \newcommand{\sech}{\operatorname{sech}} \) \( \newcommand{\inverse}[1]{#1^\leftarrow} \) \( \newcommand{\<}{\langle} \) \( \newcommand{\>}{\rangle} \) \( \newcommand{\vect}{\mathbf} \) \( \newcommand{\veci}{\mathbf{\hat ı}} \) \( \newcommand{\vecj}{\mathbf{\hat ȷ}} \) \( \newcommand{\veck}{\mathbf{\hat k}} \) \( \newcommand{\curl}{\operatorname{curl}\,} \) \( \newcommand{\dv}{\operatorname{div}\,} \) \( \newcommand{\detThree}[9]{ \operatorname{det}\left( \begin{array}{c c c} #1 & #2 & #3 \\ #4 & #5 & #6 \\ #7 & #8 & #9 \end{array} \right) } \) \( \newcommand{\detTwo}[4]{ \operatorname{det}\left( \begin{array}{c c} #1 & #2 \\ #3 & #4 \end{array} \right) } \)

MA 227 Standard C06


Chain Rule

At the end of the course, each student should be able to…

  • C06: ChainRule. Apply the multivariable Chain Rule to compute derivatives and find normal vectors.

C06. Chain Rule

  • The single-variable Chain Rule \(\frac{d}{dt}[f(u(x))]=f’(u(x))u’(x)\) may be generalized for multiple variable functions.
    • If \(f(P)\) is a function of multiple variables and \(\vect{r}(t)\) is a vector function of equal dimension, then \(\frac{d}{dt}[f(\vect r(t))]=\nabla f(\vect r(t))\cdot\vect r’(t)\).
    • An immediate result is that \(\nabla f(P_0)\) is normal to the level curve of \(f\) passing through \(P_0\).
    • Thus \(\<f_x(P_0),f_y(P_0),-1\>\) is normal to the surface \(z=f(x,y)\) at \(P_0\), and \(z=f(P_0)+f_x(P_0)(x-x_0)+f_y(P_0)(y-y_0)\) is the tangent plane to the surface \(z=f(x,y)\) at \(P_0\).
  • The total derivative \(\frac{df}{dx}\) describes the rate of change of \(f\) with respect to \(x\) when the other variables of \(f\) are dependent on \(x\) as well.
    • The chain rule shows us \(\frac{df}{dx}=\nabla f\cdot\frac{d\vect r}{dx}\).
    • For three variables: \(\frac{df}{dx}=\frac{\partial f}{\partial x}+ \frac{\partial f}{\partial y}\frac{dy}{dx}+ \frac{\partial f}{\partial z}\frac{dz}{dx}\).
    • Thus if \(f(x,y)=c\) defines \(y\) as a differentiable function of \(x\), then \(\frac{dy}{dx}=-\frac{f_x}{f_y}\).

Textbook References

  • University Calculus: Early Transcendentals (3rd Ed)
    • 13.4 (exercises 1-6, 25-32)
    • 13.6 (exercises 1-12)