\( \newcommand{\sech}{\operatorname{sech}} \) \( \newcommand{\inverse}[1]{#1^\leftarrow} \) \( \newcommand{\<}{\langle} \) \( \newcommand{\>}{\rangle} \) \( \newcommand{\vect}{\mathbf} \) \( \newcommand{\veci}{\mathbf{\hat ı}} \) \( \newcommand{\vecj}{\mathbf{\hat ȷ}} \) \( \newcommand{\veck}{\mathbf{\hat k}} \) \( \newcommand{\curl}{\operatorname{curl}\,} \) \( \newcommand{\dv}{\operatorname{div}\,} \) \( \newcommand{\detThree}[9]{ \operatorname{det}\left( \begin{array}{c c c} #1 & #2 & #3 \\ #4 & #5 & #6 \\ #7 & #8 & #9 \end{array} \right) } \) \( \newcommand{\detTwo}[4]{ \operatorname{det}\left( \begin{array}{c c} #1 & #2 \\ #3 & #4 \end{array} \right) } \)

MA 227 Standard S12


Divergence Theorem

At the end of the course, each student should be able to…

  • S12: DivThm. Apply the Divergence Theorem.

S12: Divergence Theorem

  • The Divergence Theorem states that if \(\partial D\) is the outward-oriented boundary of a solid \(D\), then \(\iint_{\partial D}\vect{F}\cdot\vect{n}\,d\sigma= \iiint_D\dv\vect F\,dV\).
    • An alternate form of Green’s Theorem holds for boundaries \(\partial R\) of regions \(R\) in the plane: \(\int_{\partial R}\vect{F}\cdot\vect{n}\,ds= \iint_R\dv\vect F\,dA\).
  • Note that our theorems all fit the form of a Generalized Fundamental Theorem of Calculus, studied in differential geometry/topology.
    • \(\int_{I}f’(x)\,dx=[f]_{\partial I}\)
    • \(\int_C\nabla f\cdot d\vect r=[f]_{\partial C}\)
    • \(\iint_R\curl\vect{F}\cdot\veck\,dA= \int_{\partial R}\vect{F}\cdot\vect{T}\,ds\)
    • \(\iint_R\dv\vect{F}\,dA= \int_{\partial R}\vect{F}\cdot\vect{n}\,ds\)
    • \(\iint_S\curl\vect{F}\cdot\vect{n}\,d\sigma= \int_{\partial S}\vect{F}\cdot\vect{T}\,ds\)
    • \(\iiint_D\dv\vect{F}\,dV= \iint_{\partial D}\vect{F}\cdot\vect{n}\,d\sigma\)
    • General form: \(\underbrace{\int\cdots\iint_{\Omega}}_{n+1}\, f’\,d\omega= \underbrace{\int\cdots\int_{\partial\Omega}}_{n}\, f\,d\omega’\)

Textbook References

  • University Calculus: Early Transcendentals (3rd Ed)
    • 15.4 (exercises 5-14, just find flux)
    • 15.8 (exercises 5-16)