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How can we understand linear maps algebraically?
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At the end of this module, students will be able to...

A1. Linear map verification. ... determine if a map between vector spaces of
polynomials is linear or not.

A2. Linear maps and matrices. ... translate back and forth between a linear
transformation of Euclidean spaces and its standard matrix, and perform
related computations.

A3. Injectivity and surjectivity. ... determine if a given linear map is injective
and/or surjective.

A4. Kernel and Image. ... compute a basis for the kernel and a basis for the
image of a linear map.
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Readiness Assurance Outcomes
Before beginning this module, each student should be able to...

• State the definition of a spanning set, and determine if a set of Euclidean
vectors spans Rn V4.

• State the definition of linear independence, and determine if a set of Euclidean
vectors is linearly dependent or independent S1.

• State the definition of a basis, and determine if a set of Euclidean vectors is a
basis S2,S3.

• Find a basis of the solution space to a homogeneous system of linear equations
S6.
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Section A.4 Definition A.1.1
A linear transformation (also known as a linear map) is a map between vector
spaces that preserves the vector space operations. More precisely, if V and W are
vector spaces, a map T : V →W is called a linear transformation if

1 T (v + w) = T (v) + T (w) for any v,w ∈ V .

2 T (cv) = cT (v) for any c ∈ R, v ∈ V .

In other words, a map is linear when vector space operations can be applied before
or after the transformation without affecting the result.
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Definition A.1.2
Given a linear transformation T : V →W , V is called the domain of T and W is
called the co-domain of T .

v

domain R3

Linear transformation T : R3 → R2

T (v)

codomain R2
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Example A.1.3
Let T : R3 → R2 be given by

T

xy
z

 =

[
x − z

3y

]
To show that T is linear, we must verify...

T

xy
z

+

uv
w

 = T

x + u
y + v
z + w

 =

[
(x + u)− (z + w)

3(y + v)

]

T

xy
z

+ T

uv
w

 =

[
x − z

3y

]
+

[
u − w

3v

]
=

[
(x + u)− (z + w)

3(y + v)

]
And also...

T

c

xy
z

 = T

cxcy
cz

 =

[
cx − cz

3cy

]
and cT

xy
z

 = c

[
x − z

3y

]
=

[
cx − cz

3cy

]
Therefore T is a linear transformation.



Module A

Math 237

Module A

Section A.1

Section A.2

Section A.3

Section A.4

Example A.1.4
Let T : R2 → R4 be given by

T

([
x
y

])
=


x + y
x2

y + 3
y − 2x


To show that T is not linear, we only need to find one counterexample.

T

([
0
1

]
+

[
2
3

])
= T

([
2
4

])
=


6
4
7
0



T

([
0
1

])
+ T

([
2
3

])
=


1
0
4
−1

+


5
4
6
−5

 =


6
4

10
−6


Since the resulting vectors are different, T is not a linear transformation.
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Fact A.1.5
A map between Euclidean spaces T : Rn → Rm is linear exactly when every
component of the output is a linear combination of the variables of Rn.

For example, the following map is definitely linear because x − z and 3y are linear
combinations of x , y , z :

T

xy
z

 =

[
x − z

3y

]
=

[
1x + 0y − 1z
0x + 3y + 0z

]

But this map is not linear because x2, y + 3, and y − 2x are not linear
combinations (even though x + y is):

T

([
x
y

])
=


x + y
x2

y + 3
y − 2x
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Activity A.1.6 (∼5 min)
Recall the following rules from calculus, where D : P → P is the derivative map
defined by D(f (x)) = f ′(x) for each polynomial f .

D(f + g) = f ′(x) + g ′(x)

D(cf (x)) = cf ′(x)

What can we conclude from these rules?

a) P is not a vector space

b) D is a linear map

c) D is not a linear map
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Activity A.1.7 (∼10 min)
Let the polynomial maps S : P4 → P3 and T : P4 → P3 be defined by

S(f (x)) = 2f ′(x)− f ′′(x) T (f (x)) = f ′(x) + x3

Compute S(x4 + x), S(x4) + S(x), T (x4 + x), and T (x4) + T (x). Which of these
maps is definitely not linear?
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Section A.4 Fact A.1.8
If L : V →W is linear, then L(z) = L(0v) = 0L(v) = z where z is the additive
identity of the vector spaces V ,W .

Put another way, an easy way to prove that a map like T (f (x)) = f ′(x) + x3 can’t
be linear is because

T (0) =
d

dx
[0] + x3 = 0 + x3 = x3 6= 0.
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Activity A.1.9 (∼15 min)
Continue to consider S : P4 → P3 defined by

S(f (x)) = 2f ′(x)− f ′′(x)

Part 1: Verify that

S(f (x) + g(x)) = 2f ′(x) + 2g ′(x)− f ′′(x)− g ′′(x)

is equal to S(f (x)) + S(g(x)) for all polynomials f , g .
Part 2: Verify that S(cf (x)) is equal to cS(f (x)) for all real numbers c and
polynomials f . Is S linear?
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Activity A.1.9 (∼15 min)
Continue to consider S : P4 → P3 defined by

S(f (x)) = 2f ′(x)− f ′′(x)

Part 1: Verify that

S(f (x) + g(x)) = 2f ′(x) + 2g ′(x)− f ′′(x)− g ′′(x)

is equal to S(f (x)) + S(g(x)) for all polynomials f , g .
Part 2: Verify that S(cf (x)) is equal to cS(f (x)) for all real numbers c and
polynomials f . Is S linear?



Module A

Math 237

Module A

Section A.1

Section A.2

Section A.3

Section A.4

Activity A.1.10 (∼20 min)
Let the polynomial maps S : P → P and T : P → P be defined by

S(f (x)) = (f (x))2 T (f (x)) = 3xf (x2)

Part 1: Show that S(x + 1) 6= S(x) + S(1) to verify that S is not linear.
Part 2: Prove that T is linear by verifying that
T (f (x) + g(x)) = T (f (x)) + T (g(x)) and T (cf (x)) = cT (f (x)).
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Let the polynomial maps S : P → P and T : P → P be defined by

S(f (x)) = (f (x))2 T (f (x)) = 3xf (x2)

Part 1: Show that S(x + 1) 6= S(x) + S(1) to verify that S is not linear.

Part 2: Prove that T is linear by verifying that
T (f (x) + g(x)) = T (f (x)) + T (g(x)) and T (cf (x)) = cT (f (x)).
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Activity A.1.10 (∼20 min)
Let the polynomial maps S : P → P and T : P → P be defined by

S(f (x)) = (f (x))2 T (f (x)) = 3xf (x2)

Part 1: Show that S(x + 1) 6= S(x) + S(1) to verify that S is not linear.
Part 2: Prove that T is linear by verifying that
T (f (x) + g(x)) = T (f (x)) + T (g(x)) and T (cf (x)) = cT (f (x)).
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Observation A.1.11
Note that S in the previous activity is not linear, even though S(0) = (0)2 = 0. So
showing S(0) = 0 isn’t enough to prove a map is linear.

This is a similar situation to proving a subset is a subspace: if the subset doesn’t
contain z, then the subset isn’t a subspace. But if the subset contains z, you
cannot conclude anything.
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Remark A.2.1
Recall that a linear map T : V →W satisfies

1 T (v + w) = T (v) + T (w) for any v,w ∈ V .

2 T (cv) = cT (v) for any c ∈ R, v ∈ V .

In other words, a map is linear when vecor space operations can be applied before
or after the transformation without affecting the result.
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Activity A.2.2 (∼5 min)

Suppose T : R3 → R2 is a linear map, and you know T

1
0
0

 =

[
2
1

]
and

T

0
0
1

 =

[
−3
2

]
. Compute T

3
0
0

.

(a)

[
6
3

]
(b)

[
−9
6

] (c)

[
−4
−2

]
(d)

[
6
−4

]
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Activity A.2.3 (∼3 min)

Suppose T : R3 → R2 is a linear map, and you know T

1
0
0

 =

[
2
1

]
and

T

0
0
1

 =

[
−3
2

]
. Compute T

1
0
1

.

(a)

[
2
1

]
(b)

[
3
−1

] (c)

[
−1
3

]
(d)

[
5
−8

]
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Activity A.2.4 (∼2 min)

Suppose T : R3 → R2 is a linear map, and you know T

1
0
0

 =

[
2
1

]
and

T

0
0
1

 =

[
−3
2

]
. Compute T

−2
0
−3

.

(a)

[
2
1

]
(b)

[
3
−1

] (c)

[
−1
3

]
(d)

[
5
−8

]
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Activity A.2.5 (∼5 min)

Suppose T : R3 → R2 is a linear map, and you know T

1
0
0

 =

[
2
1

]
and

T

0
0
1

 =

[
−3
2

]
. Do you have enough information to compute T (v) for any

v ∈ R3?

(a) Yes.

(b) No, exactly one more piece of information is needed.

(c) No, an infinite amount of information would be necessary to compute the
transformation of infinitely-many vectors.
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Section A.4 Fact A.2.6
Consider any basis {b1, . . . ,bn} for V . Since every vector v can be written
uniquely as a linear combination of basis vectors, x1b1 + · · ·+ xnbn, we may
compute T (v) as follows:

T (v) = T (x1b1 + · · ·+ xnbn) = x1T (b1) + · · ·+ xnT (bn).

Therefore any linear transformation T : V →W can be defined by just describing
the values of T (bi ).
Put another way, the images of the basis vectors determine the transformation T .
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Definition A.2.7
Since linear transformation T : Rn → Rm is determined by the standard basis
{e1, . . . , en}, it’s convenient to store this information in the m × n standard
matrix [T (e1) · · · T (en)].

For example, let T : R3 → R2 be the linear map determined by the following values
for T applied to the standard basis of R3.

T (e1) = T

([
1
0
0

])
=
[
3
2

]
T (e2) = T

([
0
1
0

])
=
[
−1
4

]
T (e3) = T

([
0
0
1

])
=
[
5
0

]
Then the standard matrix corresponding to T is

[
T (e1) T (e2) T (e3)

]
=

[
3 −1 5
2 4 0

]
.
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Activity A.2.8 (∼3 min)
Let T : R4 → R3 be the linear transformation given by

T (e1) =

 0
3
−2

 T (e2) =

−3
0
1

 T (e3) =

 4
−2
1

 T (e4) =

2
0
0


Write the standard matrix [T (e1) · · · T (en)] for T .
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Activity A.2.9 (∼5 min)
Let T : R3 → R2 be the linear transformation given by

T

xy
z

 =

[
x + 3z

2x − y − 4z

]

Find the standard matrix for T .
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Section A.4 Fact A.2.10
Because every linear map T : Rm → Rn has a linear combination of the variables in
each component, and thus T (ei ) yields exactly the coefficients of xi , the standard
matrix for T is simply an ordered list of the coefficients of the xi :

T



x
y
z
w


 =

[
ax + by + cz + dw
ex + fy + gz + hw

]
A =

[
a b c d
e f g h

]
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Let T : R3 → R3 be the linear transformation given by the standard matrix3 −2 −1

4 5 2
0 −2 1

 .

Compute T

xy
z

.
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Let T : R3 → R3 be the linear transformation given by the standard matrix3 −2 −1

4 5 2
0 −2 1

 .

Compute T

1
2
3

.
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Fact A.2.13
To quickly compute T (v) from its standard matrix A, compute the dot product
(defined in Calculus 3) of each matrix row with the vector. For example, if T has
the standard matrix

A =

1 2 3
0 1 −2
2 −1 0


then for v =

xy
z

 we will write

T (v) = Av =

1 2 3
0 1 −2
2 −1 0

xy
z

 =

1x + 2y + 3z
0x + 1y − 2z
2x − 1y + 0z


and for v =

 3
0
−2

 we will write

T (v) = Av =

1 2 3
0 1 −2
2 −1 0

 3
0
−2

 =

1(3) + 2(0) + 3(−2)
0(3) + 1(0)− 2(−2)
2(3)− 1(0) + 0(−2)

 =

−3
4
6

 .
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Activity A.2.14 (∼15 min)
Compute the following linear transformations of vectors given their standard
matrices.

T1

([
1
2

])
for the standard matrix A1 =


4 3
0 −1
1 1
3 0



T2




1
1
0
−3


 for the standard matrix A2 =

[
4 3 0 −1
1 1 3 0

]

T3

 0
−2
0

 for the standard matrix A3 =


4 3 0
0 −1 3
5 1 1
3 0 0
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Definition A.3.1
Let T : V →W be a linear transformation. T is called injective or one-to-one if
T does not map two distinct vectors to the same place. More precisely, T is
injective if T (v) 6= T (w) whenever v 6= w.

v

w

T (v)
T (w)

injective

v
w

T (v) = T (w)

not injective
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Let T : R3 → R2 be given by

T

xy
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Show that T is not injective by finding two different vectors v,w ∈ R3 such that
T (v) = T (w).
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Activity A.3.3 (∼2 min)
Let T : R2 → R3 be given by

T

([
x
y

])
=

xy
0

 with standard matrix

1 0
0 1
0 0


Is T injective? If not, find two different vectors v,w ∈ R3 such that T (v) = T (w).
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Definition A.3.4
Let T : V →W be a linear transformation. T is called surjective or onto if every
element of W is mapped to by an element of V . More precisely, for every w ∈W ,
there is some v ∈ V with T (v) = w.

surjective not surjective
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Let T : R2 → R3 be given by

T

([
x
y

])
=

xy
0

 with standard matrix

1 0
0 1
0 0


Show that T is not surjective by finding a vector in R3 that T

([
x
y

])
can never

equal.
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Let T : R3 → R2 be given by

T

xy
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Is T surjective? If not, find a vector in R2 that T

xy
z

 can never equal.
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Observation A.3.7
As we will see, it’s no coincidence that the RREF of the injective map’s standard
matrix 1 0

0 1
0 0


has all pivot columns. Similarly, the RREF of the surjective map’s standard matrix[

1 0 0
0 1 0

]
has a pivot in each row.
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Definition A.3.8
Let T : V →W be a linear transformation. The kernel of T is an important
subspace of V defined by

kerT =
{

v ∈ V
∣∣ T (v) = z

}

kerT

0
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Activity A.3.9 (∼5 min)
Let T : R2 → R3 be given by

T

([
x
y

])
=

xy
0

 with standard matrix

1 0
0 1
0 0


Which of these subspaces of R2 describes kerT , the set of all vectors that
transform into 0?

a)

{[
a
a

] ∣∣∣∣ a ∈ R
}

b)

{[
0
0

]}
c) R2
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Activity A.3.10 (∼5 min)
Let T : R3 → R2 be given by

T

xy
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Which of these subspaces of R3 describes kerT , the set of all vectors that
transform into 0?

a)


0

0
a

 ∣∣∣∣∣∣ a ∈ R


b)


aa

0

 ∣∣∣∣∣∣ a ∈ R


c)


0

0
0


d) R3
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Activity A.3.11 (∼10 min)
Let T : R3 → R2 be the linear transformation given by the standard matrix

A =

[
3 4 −1
1 2 1

]
.

Part 1: Set T

xy
z

 =

[
? + ? + ?
? + ? + ?

]
=

[
0
0

]
to find a linear system of equations

whose solution set is the kernel.
Part 2: Use RREF(A) to solve this homogeneous system of equations and find a
basis for the kernel of T .



Module A

Math 237

Module A

Section A.1

Section A.2

Section A.3

Section A.4

Activity A.3.11 (∼10 min)
Let T : R3 → R2 be the linear transformation given by the standard matrix

A =

[
3 4 −1
1 2 1

]
.

Part 1: Set T

xy
z

 =

[
? + ? + ?
? + ? + ?

]
=

[
0
0

]
to find a linear system of equations

whose solution set is the kernel.

Part 2: Use RREF(A) to solve this homogeneous system of equations and find a
basis for the kernel of T .
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Activity A.3.11 (∼10 min)
Let T : R3 → R2 be the linear transformation given by the standard matrix

A =

[
3 4 −1
1 2 1

]
.

Part 1: Set T

xy
z

 =

[
? + ? + ?
? + ? + ?

]
=

[
0
0

]
to find a linear system of equations

whose solution set is the kernel.
Part 2: Use RREF(A) to solve this homogeneous system of equations and find a
basis for the kernel of T .
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Definition A.3.12
Let T : V →W be a linear transformation. The image of T is an important
subspace of W defined by

ImT =
{

w ∈W
∣∣ there is some v ∈ V with T (v) = w

}
In the examples below, the left example’s image is all of R2, but the right
example’s image is a planar subspace of R3.
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Activity A.3.13 (∼5 min)
Let T : R2 → R3 be given by

T

([
x
y

])
=

xy
0

 with standard matrix

1 0
0 1
0 0


Which of these subspaces of R3 describes ImT , the set of all vectors that are the
result of using T to transform R2 vectors?

a)


0

0
a

 ∣∣∣∣∣∣ a ∈ R


b)


ab

0

 ∣∣∣∣∣∣ a, b ∈ R


c)


0

0
0


d) R3



Module A

Math 237

Module A

Section A.1

Section A.2

Section A.3

Section A.4

Activity A.3.14 (∼5 min)
Let T : R3 → R2 be given by

T

xy
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Which of these subspaces of R2 describes ImT , the set of all vectors that are the
result of using T to transform R3 vectors?

a)

{[
a
a

] ∣∣∣∣ a ∈ R
}

b)

{[
0
0

]}
c) R2
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Activity A.3.15 (∼5 min)
Let T : R4 → R3 be the linear transformation given by the standard matrix

A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 =
[
T (e1) T (e2) T (e3) T (e4)

]
.

Since T (v) = T (x1e1 + x2e2 + x3e3 + x4e4), the set of vectors
 3
−1
2

 ,

4
1
1

 ,

7
0
3

 ,

 1
2
−1


a) spans ImT

b) is a linearly independent subset of ImT

c) is a basis for ImT
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Observation A.3.16
Let T : R4 → R3 be the linear transformation given by the standard matrix

A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 .

Since the set


 3
−1
2

 ,

4
1
1

 ,

7
0
3

 ,

 1
2
−1

 spans ImT , we can obtain a basis for

ImT by finding RREFA =

1 0 1 −1
0 1 1 1
0 0 0 0

 and only using the vectors

corresponding to pivot columns: 
 3
−1
2

 ,

4
1
1
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Fact A.3.17
Let T : Rn → Rm be a linear transformation with standard matrix A.

• The kernel of T is the solution set of the homogeneous system given by the
augmented matrix

[
A 0

]
. Use the coefficients of its free variables to get a

basis for the kernel.

• The image of T is the span of the columns of A. Remove the vectors creating
non-pivot columns in RREFA to get a basis for the image.
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Let T : R3 → R4 be the linear transformation given by the standard matrix

A =


1 −3 2
2 −6 0
0 0 1
−1 3 1

 .

Find a basis for the kernel and a basis for the image of T .
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Observation A.4.1
Let T : V →W . We have previously defined the following terms.

• T is called injective or one-to-one if T does not map two distinct vectors to
the same place.

• T is called surjective or onto if every element of W is mapped to by some
element of V .

• The kernel of T is the set of all vectors in V that are mapped to z ∈W . It is
a subspace of V .

• The image of T is the set of all vectors in W that are mapped to by
something in V . It is a subspace of W .
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Activity A.4.2 (∼5 min)
Let T : V →W be a linear transformation where kerT contains multiple vectors.
What can you conclude?

(a) T is injective

(b) T is not injective

(c) T is surjective

(d) T is not surjective
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A linear transformation T is injective if and only if kerT = {0}. Put another way,
an injective linear transformation may be recognized by its trivial kernel.

v

w

0 T (v)
T (w)

T (0) = 0
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Activity A.4.4 (∼5 min)
Let T : R5 → R5 be a linear transformation where ImT is spanned by four vectors.
What can you conclude?

(a) T is injective

(b) T is not injective

(c) T is surjective

(d) T is not surjective
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Fact A.4.5
A linear transformation T : V →W is surjective if and only if ImT = W . Put
another way, a surjective linear transformation may be recognized by its identical
codomain and image.

surjective, ImT = R2 not surjective, ImT 6= R3
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Activity A.4.6 (∼15 min)
Let T : Rn → Rm be a linear map with standard matrix A. Sort the following
claims into two groups of equivalent statements: one group that means T is
injective, and one group that means T is surjective.

(a) The kernel of T is trivial:
kerT = {0}.

(b) The columns of A span Rm.

(c) The columns of A are linearly
independent.

(d) Every column of RREF(A) has a
pivot.

(e) Every row of RREF(A) has a pivot.

(f) The image of T equals its
codomain: ImT = Rm.

(g) The system of linear equations given
by the augmented matrix

[
A b

]
has a solution for all b ∈ Rm.

(h) The system of linear equations
given by the augmented matrix[
A 0

]
has exactly one solution.
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Observation A.4.7
The easiest way to show that the linear map with standard matrix A is injective is
to show that RREF(A) has all pivot columns.

The easiest way to show that the linear map with standard matrix A is surjective is
to show that RREF(A) has all pivot rows.
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Activity A.4.8 (∼3 min)
What can you immediately conclude about the linear map T : R5 → R3?

a) Its standard matrix has more columns than rows, so T is not injective.

b) Its standard matrix has more columns than rows, so T is injective.

c) Its standard matrix has more rows than columns, so T is not surjective.

d) Its standard matrix has more rows than columns, so T is surjective.
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Activity A.4.9 (∼2 min)
What can you immediately conclude about the linear map T : R2 → R7?

a) Its standard matrix has more columns than rows, so T is not injective.

b) Its standard matrix has more columns than rows, so T is injective.

c) Its standard matrix has more rows than columns, so T is not surjective.

d) Its standard matrix has more rows than columns, so T is surjective.
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Fact A.4.10
The following are true for any linear map T : V →W :

• If dim(V ) > dim(W ), then T is not injective.

• If dim(V ) < dim(W ), then T is not surjective.

Basically, a linear transformation cannot reduce dimension without collapsing
vectors into each other, and a linear transformation cannot increase the dimension
of its image.

v
w

T (v) = T (w)

not injective, 3 > 2 not surjective, 2 < 3

But dimension arguments cannot be used to prove a map is injective or surjective.
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Definition A.4.11
If T : V →W is both injective and surjective, it is called bijective.
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Activity A.4.12 (∼5 min)
Let T : Rn → Rm be a bijective linear map with standard matrix A. Label each of
the following as true or false.

(a) The columns of A form a basis for Rm

(b) RREF(A) is the identity matrix.

(c) The system of linear equations given by the augmented matrix
[
A b

]
has

exactly one solution for all b ∈ Rm.
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Observation A.4.13
The easiest way to show that the linear map with standard matrix A is bijective is
to show that RREF(A) is the identity matrix.
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Activity A.4.14 (∼3 min)
Let T : R3 → R3 be given by the standard matrix

A =

2 1 −1
4 1 1
6 2 1

 .

Which of the following must be true?

(a) T is neither injective nor surjective

(b) T is injective but not surjective

(c) T is surjective but not injective

(d) T is bijective.
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Activity A.4.15 (∼3 min)
Let T : R3 → R3 be given by

T

xy
z

 =

2x + y − z
4x + y + z

6x + 2y

 .

Which of the following must be true?

(a) T is neither injective nor surjective

(b) T is injective but not surjective

(c) T is surjective but not injective

(d) T is bijective.
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Activity A.4.16 (∼3 min)
Let T : R2 → R3 be given by

T

([
x
y

])
=

2x + 3y
x − y
x + 3y

 .

Which of the following must be true?

(a) T is neither injective nor surjective

(b) T is injective but not surjective

(c) T is surjective but not injective

(d) T is bijective.
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Activity A.4.17 (∼3 min)
Let T : R3 → R2 be given by

T

xy
z

 =

[
2x + y − z
4x + y + z

]
.

Which of the following must be true?

(a) T is neither injective nor surjective

(b) T is injective but not surjective

(c) T is surjective but not injective

(d) T is bijective.
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Observation A.4.18
For T : Rn → Rm where n = m, exactly one of these must hold:

• T is bijective.

• T is neither injective nor surjective

For T : Rn → Rm where n < m, exactly one of these must hold:

• T is injective, but not surjective

• T is neither injective nor surjective

For T : Rn → Rm where n > m, exactly one of these must hold:

• T is surjective, but not injective

• T is neither injective nor surjective
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