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How can we solve and apply linear constant coefficient
ODEs?
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At the end of this module, students will be able to...

C1. Constant coefficient first order. ...find the general solution to a first order
constant coefficient ODE.

C2. Modeling motion in viscous fluids. ...model the motion of a falling object
with linear drag

C3. Homogeneous constant coefficient second order. ...find the general
solution to a homogeneous second order constant coefficient ODE.

C4. IVPs. ...solve initial value problems for constant coefficient ODEs

C5. Non-homogenous constant coefficient second order. ...find the general
solution to a non-homogeneous second order constant coefficient ODE

C6. Modeling oscillators. ...model (free or forced, damped or undamped)
mechanical oscillators with a second order ODE
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Readiness Assurance Outcomes
Before beginning this module, each student should be able to...

• Describe Newton’s laws in terms of differential equations.

• Find all roots of a quadratic polynomial.

• Use Euler’s theorem to relate sin(t), cos(t), and et .

• Use Euler’s theorem to simplify complex exponentials.

• Use substitution to compute indefinite integrals.

• Use integration by parts to compute indefinite integrals.

• Solve systems of two linear equations in two variables.
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The following resources will help you prepare for this module.

• Describe Newtons laws in terms of differential equations.
https://youtu.be/cioi4lRrAzw

• Find all roots of a quadratic polynomial. https://youtu.be/2ZzuZvz33X0

https://youtu.be/TV5kDqiJ1Os

• Use Eulers theorem to relate sin(t), cos(t), and et and to simplify complex
exponentials. https://youtu.be/F_0yfvm0UoU

https://youtu.be/sn3orkHWqUQ

• Use substitution to compute indefinite integrals.
https://youtu.be/b76wePnIBdU

• Use integration by parts to compute indefinite integrals.
https://youtu.be/bZ8YAHDTFJ8

• Solve systems of two linear equations in two variables.
https://youtu.be/Y6JsEja15Vk

https://youtu.be/cioi4lRrAzw
https://youtu.be/2ZzuZvz33X0
https://youtu.be/TV5kDqiJ1Os
https://youtu.be/F_0yfvm0UoU
https://youtu.be/sn3orkHWqUQ
https://youtu.be/b76wePnIBdU
https://youtu.be/bZ8YAHDTFJ8
https://youtu.be/Y6JsEja15Vk
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Activity C.1.1 (∼5 min)
Why don’t clouds fall out of the sky?

(a) They are lighter than air

(b) Wind keeps them from falling

(c) Electrostatic charge

(d) They do fall, just very slowly
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List all of the forces acting on a tiny droplet of water falling from the sky.
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Activity C.1.3 (∼5 min)
Tiny droplets of water obey Stoke’s law, which says that air resistance is
proportional to (the magnitude of) velocity.

• Let v be the velocity of a droplet of water (positive for upward, negative for
downward).

• Let g > 0 be the magnitude of acceleration due to gravity and b > 0 be
another positive constant.

Apply Newton’s second law (force = mass × acceleration) to determine which of
the following ordinary differential equations (ODEs) models the velocity of a
falling droplet of water.

(a) v ′ = g − v

(b) v ′ = g + v

(c) mv ′ = −mg − bv

(d) mv ′ = −mg + bv
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Observation C.1.4
The modeling equation

mv ′ = −mg − bv

may be obtained by splitting the total force into gravity and air resistance:

F = Fg + Fr

Then F = ma = mv ′ and Fg = m(−g) = −mg are the result of Newton’s second
law, and Fr = −bv holds because it should be (a) in the opposite direction of
velocity and (b) a constant multiple of velocity.

Note that this equation may be rearranged as follows to group v and its derivative
v ′ together on the left-hand side:

v ′ +

(
b

m

)
v = −g
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Definition C.1.5
A first order constant coefficient differential equation can be written in the form

y ′ + by = f (x),

or equivalently,
dy

dx
+ by = f (x).

We will use both notations interchangeably.

Here, first order refers to the fact that the highest derivative we see is the first
derivative of y .
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Observation C.1.6
Consider the differential equation y ′ = y .
A useful way to visualize a first order differential equation is by a slope field

−3 −2 −1 0 1 2 3

−2

0

2

Each arrow represents the slope of a solution trajectory through that point.
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Activity C.1.7 (∼5 min)
Consider the differential equation y ′ = y with slope field below.

−3 −2 −1 0 1 2 3

−2

0

2

Part 1: Draw a trajectory through the point (0, 1).
Part 2: Draw a trajectory through the point (−1,−1).
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Part 1: Draw a trajectory through the point (0, 1).

Part 2: Draw a trajectory through the point (−1,−1).
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Activity C.1.8 (∼15 min)
Consider the differential equation y ′ = y .

Part 1: Find a solution to y ′ = y .
Part 2: Modify this solution to write an expression describing all solutions to
y ′ = y .
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Activity C.1.8 (∼15 min)
Consider the differential equation y ′ = y .
Part 1: Find a solution to y ′ = y .

Part 2: Modify this solution to write an expression describing all solutions to
y ′ = y .
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Activity C.1.8 (∼15 min)
Consider the differential equation y ′ = y .
Part 1: Find a solution to y ′ = y .
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y ′ = y .
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Definition C.1.9
A differential equation will have many solutions. Each individual solution is said to
be a particular solution, while the general solution encompasses all of these by
using parameters such as C , k , c0, c1 and so on. For example:

• The general solution to the differential equation y ′ = 2x − 3 is
y = x2 − 3x + C (as done in Calculus courses).

• The general solution for y ′ = y is y = kex (as done in the previous activity).
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Activity C.1.10 (∼15 min)
Adapt the general solution y = kex for y ′ = y to find general solutions for the
following differential equations.

Part 1: Solve y ′ = 2y .
Part 2: Solve y ′ = y + 2.
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following differential equations.
Part 1: Solve y ′ = 2y .
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Activity C.1.11 (∼15 min)
Find the solution for y ′ = y + 2 directly.

Simple idea: Since y0 = ex was a particular solution of y ′ = y , we guess that a
particular solution for y ′ = y + 2 is of the form yp = vex for some function v(x).

Part 1: Use the Product Rule to find y ′p = d
dx [vex ].

Part 2: Substitute yp and y ′p into the equation y ′ = y + 2.
Part 3: Solve for v ′, and integrate to find v .
Part 4: Find yp.
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Observation C.1.12
The technique outlined in the previous activity is called variation of parameters.
If y0 is a particular solution of the homogeneous equation, assume that a
particular solution of the non-homogeneous equation has the form yp = vy0, and
then determine what v must be.

Example:

y ′ + 3y = 0 homogeneous

y ′ + 3y = x non-homogeneous

Note that each term of the homogeneous equation includes y or it derivatives.
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Activity C.1.13 (∼20 min)
Solve y ′ = x − 3y by first solving its corresponding homogeneous equation and
using variation of parameters:

y ′ + 3y = 0 homogeneous

y ′ + 3y = x non-homogeneous

Part 1: Modify ex to find the general solution yh for the homogeneous equation.
Part 2: Choose a particular solution y0 for the homogeneous equation, and assume
yp = vy0 is a particular solution of the non-homogeneous equation for some
function v . Substitute yp into non-homogeneous equation and simplify.
Part 3: Determine v , and then determine yp.
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Observation C.1.14
Since yh = ke−3x was the general solution of y ′ + 3y = 0, and yp = x

3 − 1
9 is a

particular solution of y ′ + 3y = x ,

y = yh + yp =
(
ke−3x

)
+

(
x

3
− 1

9

)
is a solution to y ′ + 3y = x :

d

dx
[yh + yp] + 3(yh + yp) = (y ′h + 3yh) + (y ′p + 3yp) = 0 + x = x
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Fact C.1.15
Let a be a constant real number. Every constant coefficient first order ODE

y ′ + ay = f (x)

has the general solution
y = yh + yp

where yh is the general solution to the homogeneous equation y ′ + ay = 0 and yp
is a particular solution to y ′ + ay = f (t).
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Activity C.1.16 (∼15 min)
Find the general solution to y ′ = 2y + x + 1 using variation of parameters:

• Write the homogeneous equation and find its general solution yh.

• Use a particular solution y0 for the homogeneous equation to find a particular
solution yp = vy0 for the original equation.

• Then y = yh + yp gives the general solution to the equation.
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Observation C.2.1
Recall that we can model the velocity of a water droplet in a cloud by

mv ′ = −mg − bv

where negative numbers represent downward motion, m > 0 is the mass of the
droplet, g > 0 is the magnitude of acceleration due to gravity, and b > 0 is the
proportion of wind resistance to speed.
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Activity C.2.2 (∼20 min)
A water droplet with a radius of 10µm has a mass of about 4× 10−15 kg. It is
determined in a laboratory that for a droplet this size, the constant b has a value of
3× 10−3 kg/s, and it is known that g is approximately 9.8 m/s2.

Complete the following tasks to study the motion of this droplet.

Part 1: Rewrite mv ′ = −mg − bv in the form of v ′ + av = ? for some value of a.
Part 2: Find the general solution of this ODE in terms of a and g . (Let vp = wv0
when using variation of parameters to avoid confusion.)
Part 3: Due to wind resistence, eventually the droplet will effectively stop
accelerating upon reaching a certain velocity. What is this terminal velocity of the
droplet in terms of a and g?
Part 4: If the droplet starts from rest (v = 0 when t = 0), what is its velocity after
0.01 s? Use a calculator to compute the answer in m/s.
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Definition C.2.3
The last part of the previous activity is an example of an Initial Value Problem
(IVP); we were given the initial value of the velocity in addition to our differential
equation.

v ′ + (b/m)v = −g v(0) = 0

Physical scenarios often produce IVPs with a unique solution.
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Observation C.3.1
What happens when your tire hits a pothole?
https://prof.clontz.org/assets/img/good-bad-shocks.gif

https://prof.clontz.org/assets/img/good-bad-shocks.gif
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Activity C.3.2 (∼5 min)
Hooke’s law says that the force exerted by the spring is proportional to the
distance the spring is stretched from its natural length, given by a spring coefficient
k > 0.

m

k

Let y measure the displacement of the mass from the spring’s natural length.
Write a differential equation modeling the displacement of the m kg mass,
assuming that the only force acting on the mass comes from the spring.
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Observation C.3.3
Since the spring acts on the mass in the opposite direction of displacement, we
may model the mass-spring system with

my ′′ = −ky .

m

k
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Activity C.3.4 (∼15 min)
Consider the mass-spring equation my ′′ = −ky where m = k = 1:

y ′′ = −y .

Part 1: Find a solution.
Part 2: Find the general solution.
Part 3: Describe the long term behavior of the mass-spring system.
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Activity C.3.5 (∼5 min)
The general solution y = c1 cos(t) + c2 sin(t) models infinitely oscillating behavior,
but in applications this does not occur.

Thus, a damper (a.k.a. dashpot) is often considered, which provides a force
proportional to velocity, given by the coefficient b > 0. For example, friction may
act as a damper to a mass-spring system.

m

kb

Write a differential equation modeling the displacement of a mass in a damped
mass-spring system.
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Observation C.3.6
The damped mass-spring system can be modelled by

my ′′ = −by ′ − ky .

Here m is the mass, k is the spring constant, and b is the damping constant. We
can rearrange this as

y ′′ + By ′ + Ky = 0

where B = b
m and K = k

m .

This is a homogeneous second order constant coefficient differential equation.
Here, homogeneous refers to the 0 on the right hand side of the equation.
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Activity C.3.7 (∼15 min)
Consider the second order constant coefficient equation

y ′′ = y .

Part 1: Find a solution.
Part 2: Find the general solution.
Part 3: Describe the long term behavior of the solutions.
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Observation C.3.8
It is sometimes useful to think in terms of differential operators.

• We will use D to represent a derivative.So for any function y ,

D(y) =
∂y

∂x
= y ′.

• D2 will denote the second derivative operator (i.e. differentiate twice, or apply
D twice).

• We will use I for the identity operator, so I (y) = y . (It can be thought of as
I = D0, take the derivative zero times.)

In this language, the differential equation y ′ + 3y = 0 can be rewritten as
D(y) + 3I (y) = 0, or more simply (D + 3I )(y) = 0.

Thus, the question of solving the homogeneous differential equation is the question
of finding the kernel of the differential operator D + 3I : all the functions y that
the transformation D + 3I turns into the zero function.
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Activity C.3.9 (∼5 min)
Find a differential operator whose kernel is the solution set of the ODE y ′ = 4y .

a) D − 4I

b) D + 4I

c) D2 − 4I

d) D2 + 4D
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Activity C.3.10 (∼5 min)
The kernel of the differential operator D − 4I whose kernel is the general solution
of the ODE y ′ = 4y . What is its general solution?

a) y = ke−4x

b) y = ke4x

c) y = 4x + k

d) y = 4
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Activity C.3.11 (∼5 min)
What are ODE and general solution given by the kernel of the differential operator
D − aI for a real number a?

a) y ′ − ay = 0 and y = keax .

b) y ′ + ay = 0 and y = ke−ax .

c) y ′ − a = 0 and y = ax + k.

d) y ′′ + a = 0 and y = − a
2x

2 + kx + l .
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Observation C.3.12
The kernel of the differential operator D − aI is given by the general solution
y = keax .
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Activity C.3.13 (∼15 min)
Consider the ODE

y ′′ + 5y ′ + 6y = 0.

Part 1: Use I ,D,D2 to write a differential operator whose kernel is the solution set
of the above ODE.
Part 2: Factor this differential operator as a composition of two simpler operators,
as you would a polynomial. (This works because the order of applying the
transformations D and I doesn’t matter).
Part 3: Find the general solution for each factor, and then combine to find the
general solution to the overall ODE.
Part 4: Check that your general solution is valid by computing y ′, y ′′ and plugging
into y ′′ + 5y ′ + 6y = 0.
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Observation C.3.14
The kernel of (D + 3I )(D + 2I ) is given by y = k1e

−3t + k2e
−2t .

In general for α 6= β, the kernel of (D − αI )(D − βI ) is given by y = k1e
at + k2e

bt .
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Activity C.3.15 (∼10 min)
Solve the ODE

2y ′′ + 7y ′ + 6y = 0.



Module C

Math 238

Module C

Section C.1

Section C.2

Section C.3

Section C.4

Section C.5

Section C.6
Activity C.3.16 (∼15 min)
Recall that the general solution to y ′′ + y = 0 is given by y = c1 sin(x) + c2 cos(x).
Show how to find this solution using the differential operator D2 + 1.
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Activity C.3.17 (∼15 min)
Consider the ODE

y ′′ + 2y ′ + 5y = 0

.

Part 1: Find its general solution using complex numbers.
Part 2: Describe the general solution only involving real numbers.
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Activity C.3.18 (∼5 min)
Which of these are solutions to the following ODE?

y ′′ − 4y ′ + 4y = 0

a) y = e2t , where y ′ = 2e2t and y ′′ = 4e2t

b) y = te2t , where y ′ = e2t + 2te2t and y ′′ = 4e2t + 4e2t

c) y = e2t + te2t , where y ′ = 3e2t + 2te2t and y ′′ = 8e2t + 4e2t

d) All of the above
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Observation C.3.19
To solve y ′′ − 4y ′ + 4y = 0, we need to find the kernel of
(D − 2I )(D − 2I ) = (D − 2I )2.

• The kernel of D − 2I is given by ke2x .

• But if (D − 2I )(y) = e2t , then (D − 2I )(D − 2I )(y) = (D − 2I )(e2t) = 0 also.

• That means the kernel of (D − 2I )2 is given by both (D − 2I )(y) = 0 and
(D − 2I )(y) = e2t .
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Section C.6 Activity C.3.20 (∼15 min)
Solve (D − 2I )(y) = e2x .
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Observation C.3.21
Since (D − 2I )(y) = 0 solves to ke2t and (D − 2I )(y) = e2t solves to kte2t , we
have shown that the general solution of

y ′′ − 4y ′ + 4y = 0

is
y = c0e

2t + c1te
2t .
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Activity C.3.22 (∼10 min)
Consider the homogeneous second order constant coefficient ODE

ay ′′ + by ′ + cy = 0.

If r is a number such that ar2 + br + c = 0, what can you conclude?

(a) ert is a solution.

(b) e−rt is a solution.

(c) tert is a solution.

(d) There are no solutions.
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Activity C.3.23 (∼5 min)
Consider the homogeneous second order constant coefficient ODE

ay ′′ + by ′ + cy = 0.

When does the general solution have the form c0e
rt + c1te

rt ?

(a) When the polynomial ax2 + bx + c has two distinct real roots.

(b) When the polynomial ax2 + bx + c has a repeated real root.

(c) When the polynomial ax2 + bx + c has two distinct non-real roots.

(d) When the polynomial ax2 + bx + c has a repeated non-real root.
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Observation C.3.24
Consider the homogeneous second order constant coefficient ODE

ay ′′ + by ′ + cy = 0

given by the differential operator aD2 + bD + cI . Let r be a (possibly non-real)
solution to ax2 + bx + c = 0:

• ert is a particular solution of the ODE.

• If r is a double root, tert is also a particular solution.

• if r = α + βi is not real, Euler’s formula allows us to express the real-valued
solutions in terms of sin(βt) and cos(βt).

Due to the usefulness of its solutions, ax2 + bx + c = 0 is called the auxiliary
equation for this ODE.
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Remark C.4.1
While first or second-order constant-coefficient ODEs usually solve to general
solutions such as y = c1e

t + c2e
−2t , the values of the parameters c1, c2 may be

determined when given additional information.
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Activity C.4.2 (∼10 min)
Solve the IVP

y ′ + 3y = 0, y(0) = 2.
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Activity C.4.3 (∼15 min)
Solve y ′′ − 6y ′ + 9y = 0 where y(0) = 2 and y(1) = 3

e3
.
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Section C.6 Activity C.4.4 (∼15 min)
Solve y ′′ − 6y ′ + 8y = 0 where y(0) = 1 and y ′(0) = −2.
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Observation C.5.1
Consider the homogeneous second order constant coefficient ODE

ay ′′ + by ′ + cy = 0.

• If r is a root of ax2 + bx + c = 0, then ert is a solution of the ODE.

• If r is a double root (that is, ax2 + bx + c = (x − r)2), tert is also a solution.

• If r = a + bi is not real, Euler’s formula allows us to express eat+bit in terms
of eat , sin(bt), and cos(bt) to get a real-valued general solution.
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Activity C.5.2 (∼15 min)
Consider the following scenario: a mass of 4 kg suspended from a damped spring
with spring constant k = 2 kg/s2 and damping constant b = 6 kg/s. As previously
discussed, this is modeled by the ODE

my ′′ = −by ′ − ky .

Part 1: Find the general solution for the ODE in terms of m, b, k .
Part 2: The mass is pulled down 0.3 m from its natural length and released from
rest. Use the initial conditions y(0) = ? and y ′(0) = ? to find the particular
solution modeling this scenario.
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Activity C.5.3 (∼5 min)
A 1 kg mass is suspended from a spring with spring constant k = 9 kg/s2. No
damping is applied, but an external electromagnetic force of F (t) = sin(t) is
applied. Which of these ODEs models this scenario?

a) my ′′ + ky + sin(t) = 0

b) my ′′ + ky = sin(t)

c) my ′′ + by ′ = sin(t)

d) my ′′ + by ′ + sin(t) = 0
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Observation C.5.4
Because my ′′ is the total force acting on the object, −by ′ − ky is the force acting
on the object by the spring, and an additional external force of F (t) is applied, we
get my ′′ = −by ′ − ky + F (t) which rearranges to

my ′′ + ky = sin(t)

when b = 0 (no damping) and F (t) = sin(t).

This is an example of a nonhomogeneous second-order constant coefficient
equation of the form

ay ′′ + by ′ + cy = F (t)

since the F (t) = sin(t) term is not a multiple of y or its derivatives. As with
first-order examples, these may be solved with variation of parameters.
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Activity C.5.5 (∼15 min)
Suppose y1 and y2 are two independent particular solutions of ay ′′ + by ′ + cy = 0.

By variation of paraameters, we’ll assume we can find a particular solution
yp = v1y1 + v2y2 for the ODE using the currently unknown functions v1, v2.

Part 1: Use the product rule (on v1y1 and v2y2) to compute y ′p.
Part 2: Since we get to choose what v1, v2 are, let’s only look for examples where
v ′1y1 + v ′2y2 = 0 to simplify calculations. Assuming this, compute y ′′p .
Part 3: Simplify the ODE ay ′′p + by ′p + cyp = f (x), keeping in mind that
ay ′′1 + by ′1 + cy1 = 0 and ay ′′2 + by ′2 + cy2 = 0.
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Observation C.5.6
If we can find functions v1 and v2 that solve the system of equations

y1v
′
1 + y2v

′
2 = 0

y ′1v
′
1 + y ′2v

′
2 =

1

a
f (t)

then yp = y1v1 + y2v2 is a particular solution for ay ′′ + by ′ + cy = f (x).
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Activity C.5.7 (∼20 min)
Consider the nonhomogeneous ODE

y ′′ + 9y = sin(t)

of the form ay ′′ + by ′ + cy = f (t) for a = 1, b = 0, c = 9, f (t) = sin(t).

Part 1: Find yh = k1y1 + k2y2, where y1, y2 are independent real-valued particular
solutions of y ′′h + 9yh = 0.
Part 2: Substitute a, f (t), y1, y2, y

′
1, y
′
2 into

y1v
′
1 + y2v

′
2 = 0

y ′1v
′
1 + y ′2v

′
2 =

1

a
f (t)

Part 3: Find v1, v2 by solving that system, and using∫
sin(t) cos(3t)dt = 1

8 cos(t) cos(3t) + 3
8 sin(t) sin(3t) + C and∫

sin(t) sin(3t)dt = −1
8 cos(t) sin(3t) + 3

8 sin(t) cos(3t) + C .
Part 4: Use yp = y1v1 + y2v2 to write the general solution y = yh + yp of the
original nonhomogeneous ODE.
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of the form ay ′′ + by ′ + cy = f (t) for a = 1, b = 0, c = 9, f (t) = sin(t).
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Activity C.5.7 (∼20 min)
Consider the nonhomogeneous ODE

y ′′ + 9y = sin(t)

of the form ay ′′ + by ′ + cy = f (t) for a = 1, b = 0, c = 9, f (t) = sin(t).

Part 1: Find yh = k1y1 + k2y2, where y1, y2 are independent real-valued particular
solutions of y ′′h + 9yh = 0.
Part 2: Substitute a, f (t), y1, y2, y

′
1, y
′
2 into

y1v
′
1 + y2v

′
2 = 0

y ′1v
′
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′
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Part 3: Find v1, v2 by solving that system, and using∫
sin(t) cos(3t)dt = 1

8 cos(t) cos(3t) + 3
8 sin(t) sin(3t) + C and∫

sin(t) sin(3t)dt = −1
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Activity C.5.8 (∼10 min)
Consider the nonhomogeneous ODE y ′′ + 9y = sin(3t).

Part 1: Find v1 and v2 by solving

y1v
′
1 + y2v

′
2 = 0

y ′1v
′
1 + y ′2v

′
2 =

1

a
f (t)

for particular solutions y1, y2 of y ′′h + 9yh = 0. Use∫
sin(3t) cos(3t)dt = 1

6 sin2(3t) + C and∫
sin2(3t)dt = 1

6(3t − sin(3t) cos(3t)) + C .
Part 2: Write the general solution of the original nonhomogeneous ODE.
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Activity C.5.8 (∼10 min)
Consider the nonhomogeneous ODE y ′′ + 9y = sin(3t).

Part 1: Find v1 and v2 by solving
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′
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′
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sin(3t) cos(3t)dt = 1

6 sin2(3t) + C and∫
sin2(3t)dt = 1

6(3t − sin(3t) cos(3t)) + C .

Part 2: Write the general solution of the original nonhomogeneous ODE.
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Activity C.5.8 (∼10 min)
Consider the nonhomogeneous ODE y ′′ + 9y = sin(3t).

Part 1: Find v1 and v2 by solving

y1v
′
1 + y2v

′
2 = 0

y ′1v
′
1 + y ′2v

′
2 =

1

a
f (t)

for particular solutions y1, y2 of y ′′h + 9yh = 0. Use∫
sin(3t) cos(3t)dt = 1

6 sin2(3t) + C and∫
sin2(3t)dt = 1

6(3t − sin(3t) cos(3t)) + C .
Part 2: Write the general solution of the original nonhomogeneous ODE.
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Activity C.6.1 (∼20 min)
A 3kg mass is attached to a spring requires 4 Newtons (kg ·m/s2) to pull the mass
2 meters from its natural length. No damper is applied. The mass is then released
from rest.

Part 1: Adapt the ODE
my ′′ + by ′ + ky = 0

to give an initial value problem modeling this scenario.
Part 2: How much time will pass before the spring first returns to its natural
length?
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