MA437 - 2019 Spring - Assessment 02/19 - Dr. Clontz

Name:

Circle the most appropriate response for each.

Chapter 2 Computation

1. Let $f(z) = z^2 + \overline{z}$. Find f(3-4i). A. 20 + 9iB. -7 - 20iC. -10 + 9iD. None of these. 2. Find $\lim_{z \to i-1} \frac{z^2 + 2z + 2}{z + 1 - i}$. A. 0 B. 2*i* C. 4 - 3iD. None of these. 3. Find the value of $\frac{d}{dz} \left[\frac{z^2 + 2z + 2}{z + 1 - i} \right]$ when z = i. A. 1 B. -iC. 2 - 2iD. None of these. 4. Let z = x + iy and $f(z) = x^2 - y^2 + (2xy)i$. Find f'(1+i). A. 3 B. -4iC. 2 + 2iD. None of these. 5. Let z = x + iy and $f(z) = u(z) + iv(z) = ye^{2ix}$. Find v_x . A. $2y\cos(2x)$ B. $2x\sin(2y)$ C. $2e^{xy}$

D. None of these.

Chapter 2 Knowledge

Circle the most appropriate response for each.

- 6. If $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ exists, then f is differentiable at z.
 - A. True
 - B. False
- 7. There exists a continuous function f such that g defined by $g(z) = -5f(z) + f(z)^2$ is discontinuous at some point.
 - A. True
 - B. False
- 8. There exists a differentiable function f such that every directional derivative of f exists.
 - A. True
 - B. False
- 9. The domain of $f(z) = \frac{2}{z+\overline{z}}$ is all complex numbers with a nonzero real part.
 - A. True
 - B. False
- 10. If f is singular at a point z_0 , then there exists a disk $\{z : |z z_0| < \epsilon\}$ around that point such that f is non-differentiable at every point in that disk. (Put another way, z_0 is far away from any points at which f is differentiable.)
 - A. True
 - B. False

Chapter 2 Proofs

Prove one (not both) of the following.

- 11. Prove that $\lim_{z\to 1} \frac{z-1}{z-1}$ does not exist.
- 12. Prove that $f(z) = \overline{z}^2$ is differentiable at exactly one point.