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Remark 1.1
This brief module gives an overview for the course.
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Remark 1.2

What is Linear Algebra?

Linear algebra is the study of linear maps.
e In Calculus, you learn how to approximate any function by a linear function.
e In Linear Algebra, we learn about how linear maps behave.

e Combining the two, we can approximate how any function behaves.
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Remark 1.3
What is Linear Algebra good for?

Linear algebra is used throughout several fields in higher mathematics.

In computer graphics, linear algebra is used to help represent 3D objects in a
2D grid of pixels.

Linear algebra is used to approximate differential equation solutions in a vast
number of engineering applications (e.g. fluid flows, vibrations, heat transfer)
whose solutions are very difficult (or impossible) to find precisely.

Google's search engine is based on its Page Rank algorithm, which ranks
websites by computing an eigenvector of a matrix.
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Remark 1.4
What will | learn in this class?
By the end of this class, you will be able to:

e Solve systems of linear equations. (Module E)

e I|dentify vector spaces and their properties. (Module V)

Analyze the structure of vector spaces and sets of vectors. (Module S)

Use and apply the algebraic properties of linear transformations. (Module A)

Perform fundamental operations in the algebra of matrices. (Module M)

Use and apply the geometric properties of linear transformations. (Module G)
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How can we solve systems of linear equations?
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At the end of this module, students will be able to...

E1l. Systems as matrices. ... translate back and forth between a system of linear
equations and the corresponding augmented matrix.

E2. Row reduction. ... put a matrix in reduced row echelon form.

E3. Systems of linear equations. ... compute the solution set for a system of
linear equations.
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Readiness Assurance Outcomes

Before beginning this module, each student should be able to...
e Determine if a system to a two-variable system of linear equations will have
zero, one, or infinitely-many solutions by graphing.
e Find the unique solution to a two-variable system of linear equations by
back-substitution.
e Describe sets using set-builder notation, and check if an element is a member
of a set described by set-builder notation.
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The following resources will help you prepare for this module.
e Systems of linear equations (Khan Academy): http://bit.ly/2121etm

e Solving linear systems with substitution (Khan Academy):
http://bit.ly/1S1Mpix
e Set builder notation: https://youtu.be/xnfUZ-NTsCE


http://bit.ly/2l21etm
http://bit.ly/1SlMpix
https://youtu.be/xnfUZ-NTsCE
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Definition E.1

A linear equation is an equation of the variables x; of the form
Module E

aix1 + axxo + -+ + apxp, = b.

A solution for a linear equation is a Euclidean vector

that satisfies
asit+as+---+apspn=>b

(that is, a Euclidean vector that can be plugged into the equation).
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Remark E.2
In previous classes you likely used the variables x, y, z in equations. However, since

this course often deals with equations of four or more variables, we will often write
our variables as x;, and assume x = x1,y = x»,Zz = x3, w = x4 when convenient.
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A system of linear equations (or a linear system for short) is a collection of one

or more linear equations.
Module E

a11x1 + aXo+...+ ainxp = b1

anixy+ amxo+ ...+ amxn = b

amiXi+ amexo + ...+ amnxn = bm
Its solution set is given by
S1 S1
52 52

is a solution to all equations in the system

Sn Sn
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When variables in a large linear system are missing, we prefer to write the system in

one of the following standard forms:

Original linear system: Verbose standard form: Concise standard form:
3x1 —2x2+4x3 = 0 3i—20+43 = 0 3x; — 2x0 +4x3 =

—Xo +x3 =—2 Ox1 —1Ixo+1x3 =2 — X0+ x3 =2
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Definition E.5
A linear system is consistent if its solution set is non-empty (that is, there exists a
solution for the system). Otherwise it is inconsistent.
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All linear systems are one of the following:

Module E

e Consistent with one solution: its solution set contains a single vector, e.g.
1
2
3

e Consistent with infinitely-many solutions its solution set contains

infinitely many vectors, e.g. 2— 3a aelR

e Inconsistent: its solution set is the empty set {} = ()
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Activity E.7 (~10 min) All inconsistent linear systems contain a logical
contradiction. Find a contradiction in this system to show that its solution set is ().

—x1+2x =5
2x1 —4xp =6
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Module E Activity E.8 (~10 min) Consider the following consistent linear system.

—x1 +2x = =3
2X1 - 4X2 =6
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Module E Activity E.8 (~10 min) Consider the following consistent linear system.
—x1 +2x = =3
2X1 - 4X2 =6

Part 1: Find three different solutions for this system.
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Activity E.8 (~10 min) Consider the following consistent linear system.

—x1 +2x = =3
2X1 - 4X2 =6

Part 1: Find three different solutions for this system.
Part 2: Let xo = a where a is an arbitrary real number, then find an expression for

ae R} for the linear

.
x1 in terms of a. Use this to write the solution set { [a]

system.
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Module E Activity E.9 (~10 min) Consider the following linear system.
x14+2x — x4 = 3
X3 +4xqg =—2
Describe the solution set
?
a
REE beR
b

to the linear system by setting x, = a and x4 = b, and then solving for x; and xs.
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Observation E.10

Solving linear systems of two variables by graphing or substitution is reasonable for
two-variable systems, but these simple techniques won't usually cut it for equations
with more than two variables or more than two equations. For example,

—2x1 —4xo+ x3— 4xq4 =—-8
x1+2xp4+2x3+ 12x4 =—1
x1+2x+ x3+ 8x4 = 1

has the exact same solution set as the system in the previous activity, but we'll
want to learn new techniques to compute these solutions efficiently.
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Remark E.11
The only important information in a linear system are its coefficients and constants.

Original linear system: Verbose standard form: Coefficients/constants:
X1+3X3: 3 1X]_+0X2+3X3: 3 1 03‘ 3
3x1 —2x0 +4x3 = 0 3x1 —2x0+4x3 = 0 3-24| 0

—X2 + X3 =2 0X1—1X2+1X3:_2 0—11‘—2
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A system of m linear equations with n variables is often represented by writing its
coefficients and constants in an augmented matrix.

ayixy+ axo+...4+ aipnxp = by aix aw - awn | b
a1x1 + axxe+ ...+ Xy = by 21 a2 oo | b
dml dm2 ' dmn bm

amiX1+ ameXo + ...+ amnXn = bm
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Example E.13
The corresponding augmented matrix for this system is obtained by simply writing

the coefficients and constants in matrix form.

Linear system: Augmented matrix:

x1+3x3 = 3
1 0 3|3

3x1 —2x0 +4x3 = 0 3 5 4| 0
Xt =2 0 -1 1|-2
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Definition E.14
Two systems of linear equations (and their corresponding augmented matrices) are
said to be equivalent if they have the same solution set.

For example, both of these systems share the same solution set { [ﬂ }

3x1 —2x =1 3x1 —2x =1
x1+4x =5 4x1 +2x, =6

Therefore these augmented matrices are equivalent, which we denote with ~:
3 2|1 3 =21
1 4 |5 4 2 1|6
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odule £ Activity E.15 (~10 min) Following are seven procedures used to manipulate an
augmented matrix. Label the procedures that would result in an equivalent
augmented matrix as valid, and label the procedures that might change the
solution set of the corresponding linear system as invalid.

a) Swap two rows. e) Add a constant multiple of one row
b) Swap two columns. to another row.
c) Add a constant to every term in a
row. f) Replace a column with zeros.
d) Multiply a row by a nonzero
constant. g) Replace a row with zeros.
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@ Swap two rows, for example, Ry <> Ry:
1 213 4 516
4 516 1 2|3
® Multiply a row by a nonzero constant, for example, 2R; — Ry:

[1 2 3] N [2(1) 2(2) 2(3)]

Module E

4 5|6 4 5 6

® Add a constant multiple of one row to another row, for example,
R2 — 4-R1 — Rg:
1 2|3 1 2 3
4 5|6 4—4(1) 5—4(2)|6—4(3)

Whenever two matrices A, B are equivalent (so whenever we do any of these
operations), we write A ~ B.



Linear Algebra

o Activity E.17 (~10 min) Consider the following (equivalent) linear systems.

Module E (A) (C) (E)
—2x1 +4xp —2x3 =—8 X1 —2x0+2x3 = 7 X1 — 2Xo =1
X1 —2x0+2x3 = 7 2x3 = 6 x3 =3
3x; — 6xp +4x3 = 15 —2x3 =—6 0=0
(B) (D) (F)
x1—2xp+2x3 = 7 X1 —2x2 +2x3 = X1 —2xp+2x3 = 7
—2X1 —|—4X2 —2X3 =—-8 X3 = 2X3 =6

3x1 —6x0 +4x3 = 15 —2x3 =—6 3x1 —6x2+4x3 =15
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Activity E.17 (~10 min) Consider the following (equivalent) linear systems.

(A) (€)
—2x1 +4xp —2x3 =—8 X1 —2x0+2x3 = 7
X1 —2x0+2x3 = 7 2x3 = 6
3x1 —6x0 +4x3 = 15 —2x3 =—06
(B) (D)
X1 —2x0+2x3 = 7 X1 —2xp+2x3 =
—2x1+4xp —2x3 =—8 X3 =
3x1 —6x0 +4x3 = 15 —2x3 =—06

Part 1: Find a solution to one of these systems.

(E)

(F)

X1—2X2 =1
X3 =3
0 =0

X1 —2xp+2x3 = 7
2x3 = 6
3x1 —6x0 +4x3 =15
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Activity E.17 (~10 min) Consider the following (equivalent) linear systems.

(A) ()
—2x1 +4xp —2x3 =—8 X1 —2x0+2x3 = 7
X1 —2x0+2x3 = 7 2x3 =
3x1 —6x0 +4x3 = 15 —2x3 =—06
(B) (D)
X1 —2x0+2x3 = 7 X1 —2xp+2x3 =
—2x1+4xp —2x3 =—8 X3 =
3x1 —6x0 +4x3 = 15 —2x3 =—06

Part 1: Find a solution to one of these systems.

(E)

(F)

X1—2X2 =1
X3 =3
0 =0

X1 —2xp+2x3 = 7
2x3 = 6
3x1 —6x0 +4x3 =15

Part 2: Rank the six linear systems from most complicated to simplest.
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Activity E.18 (~5 min) We can rewrite the previous in terms of equivalences of
augmented matrices

Module E

-2
1
3

4
-2
—6

-2

NN N

-2

-8
7
15

—6

(1) -2
2 4
3 -6

(») —2
0 0
0 0

~

(1) -2

0 0

3 -6
(1) -2

0 0

0 0

2
2
4
0
@
0

7
6
15

;
3
O_

Determine the row operation(s) necessary in each step to transform the most

complicated system’s augmented matrix into the simplest.
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Activity E.19 (~10 min) A matrix is in reduced row echelon form (RREF) if

@ The leading term (first nonzero term) of each nonzero row is a 1. Call these
terms pivots.

® Each pivot is to the right of every higher pivot.
© Each term above or below a pivot is zero.
O All rows of zeroes are at the bottom of the matrix.

Circle the leading terms in each example, and label it as RREF or not RREF.

(A) Q) (E)
1 0 0| 3 0 0 0] O 01 0|7
0 1]-1 1 2 0| 3 1 0l4
0 0 0O 0 0 1|-1 0 0lo
B D
(B) (D) (F)
12 4] 3 10 2|-3
00 1|-1 0 3 3|-3 10 0]|4
0000 000|0 0 1 0}7
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Remark E.20
It is important to understand the Gauss-Jordan elimination algorithm that
converts a matrix (augmented or not) into reduced row echelon form.

A video outlining how to perform the Gauss-Jordan Elimination algorithm by hand
is available at https://youtu.be/CqONxk2dhhU. Practicing several exercises
outside of class using this method is recommended.

In the next section, we will learn to use technology to perform this operation for us,
as will be expected when applying row-reduced matrices to solve other problems.


https://youtu.be/Cq0Nxk2dhhU
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Activity E.21 (~10 min) Free browser-based technologies for mathematical

Module E computation are available online.

e Go to https://octave-online.net.

e Type A=sym([1 3 4 ; 2 5 7]) and press Enter to store the matrix

1 3 2f. .
[2 5 7] in the variable A.

e The symbolic function sym is used to calculate precise answers rather than
floating-point approximations.
e The vertical bar in an augmented matrix does not affect row operations, so the

RREF of [; g 5] may be computed in the same way.

e Type rref (A) and press Enter to compute the reduced row echelon form of
A.


https://octave-online.net
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Remark E.22
We will frequently need to know the reduced row echelon form of matrices during
class, so feel free to use Octave-Online.net to compute RREF efficiently.

You may alternatively use the calculator you will use during assessments. Be sure
to use fractions mode to compute exact solutions rather than floating-point
approximations.
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Activity E.23 (~10 min) Consider the system of equations.

Module E 3X1 - 2X2 + 13X3 -
2x1 —2xp +10x3 = 2
—x1+3x — 6x3 =11
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Activity E.23 (~10 min) Consider the system of equations.

Module E 3x1 —2x0+13x3 = 6
2x1 —2xp +10x3 = 2
—x1+3x— bx3 =11

Part 1: Convert this to an augmented matrix and use technology to compute its
reduced row echelon form:

RREF |7 7 7| 7| =
207 7107
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Activity E.23 (~10 min) Consider the system of equations.

Module E 3X1 - 2X2 + 13X3 -
2x1 —2xp +10x3 = 2
—x1+3x — 6x3 =11

Part 1: Convert this to an augmented matrix and use technology to compute its
reduced row echelon form:
RREF |7 72 72| 7| =
207 7217

Part 2: Use the RREF matrix to write a linear system equivalent to the original
system. Then find its solution set.
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Activity E.24 (~10 min) Consider the system of equations.

Module E 3x1 —2x0 +13x3 =6
2x1 —2x0 +10x3 =2

—X1 - 3X3 =1
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Activity E.24 (~10 min) Consider the system of equations.
Module E 3x1 —2x0 +13x3 =6
2x1 —2x2 + 10x3 =2
—X1 - 3X3 =1

Part 1: Convert this to an augmented matrix and use technology to compute its
reduced row echelon form:

RREF |7 7 7| 7| =
207 7107
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Activity E.24 (~10 min) Consider the system of equations.

3x1 —2x0 +13x3 =6
2x1 —2x2 + 10x3 =2

—X1 - 3X3 =1

Part 1: Convert this to an augmented matrix and use technology to compute its
reduced row echelon form:
RREF |7 72 72| 7| =
207 7217

Part 2: Use the RREF matrix to write a linear system equivalent to the original
system. Then find its solution set.
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Activity E.25 (~10 min) Consider the following linear system.

x1 +2x+3x3 =1
2x1 + 4xp+8x3 =0
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Activity E.25 (~10 min) Consider the following linear system.

X1 + 2X2—|—3X3 =1
2x1 + 4xp+8x3 =0

Part 1: Find its corresponding augmented matrix A and use technology to find
RREF(A).
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Activity E.25 (~10 min) Consider the following linear system.

X1 + 2X2—|—3X3 =1
2x1 + 4xp+8x3 =0

Part 1: Find its corresponding augmented matrix A and use technology to find
RREF(A).
Part 2: How many solutions do these linear systems have?
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system from the previous activity:
Module E

X1 + 2x =4
x3 =—1
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system from the previous activity:
Module E
X1 + 2x =4
x3 =—1

Part 1: Let x; = a and write the solution set in the form 711aeR
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Activity E.26 (~10 min) Consider the simple linear system equivalent to the
system from the previous activity:

Part 1: Let xq =

Part 2: Let xo =

X1 + 2x =4
x3 =—1

a and write the solution set in the form

b and write the solution set in the form

ackR

beR
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Activity E.26 (~10 min) Consider the simple linear system equivalent to the

system from the previous activity:

X1 + 2x =4

x3 =—1

Part 1: Let x; = a and write the solution set in the form

Part 2: Let xo = b and write the solution set in the form

ICRE o SEECCREES RS Y 1)

ackR

beR

Part 3: Which of these was easier? What features of the RR_EF_matrix

[@20

5 0 @ _41 caused this?
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Definition E.27
Recall that the pivots of a matrix in RREF form are the leading 1s in each non-zero

row.

The pivot columns in an augmented matrix correspond to the bound variables in
the system of equations (xi, x3 below). The remaining variables are called free
variables (x; below).

(1) 2 o4
0o 0 (1 -1
To efficiently solve a system in RREF form, assign letters to the free variables, and
then solve for the bound variables.
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Activity E.28 (~10 min) Find the solution set for the system

2x1 —2xp —b6x3+x4— x5 = 3
—x1+ x0+3x3—x4+2x5 =—3
xX1—2x0— x3+xa+ x5 = 2

by row-reducing its augmented matrix, and then assigning letters to the free
variables (given by non-pivot columns) and solving for the bound variables (given
by pivot columns) in the corresponding linear system.
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Observation E.29
The solution set to the system

2x1 —2x0 —b6x3+x4— x5 = 3
—x1+ x0+3x3—x3+2x5 =—3
xX1—2x0— x3+xa+ x5 = 2
may be written as
1+5a+2b
1+2a+3b
a a,beR
3+3b

b



Linear Algebra

Clontz &

Lewis

Module E Remark E.30
Don't forget to correctly express the solution set of a linear system, using
set-builder notation for consistent systems with infintely many solutions.

1
¢ Consistent with one solution: e.g. 2
3
1
e Consistent with infinitely-many solutions: e.g. 2—-3a|l|aeR
a

e Inconsistent: () or {}
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What is a vector space?
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At the end of this module, students will be able to...

V1.

V2,

V3.
V4.
V5.

V6.
V7.

V8.
V9.

V10.

Vector spaces. ... explain why a given set with defined addition and scalar
multiplication does satisfy a given vector space property, but nonetheless isn't
a vector space.

Linear combinations. ... determine if a Euclidean vector can be written as a
linear combination of a given set of Euclidean vectors.

Spanning sets. ... determine if a set of Euclidean vectors spans R”.
Subspaces. ... determine if a subset of R” is a subspace or not.

Linear independence. ... determine if a set of Euclidean vectors is linearly
dependent or independent.

Basis verification. ... determine if a set of Euclidean vectors is a basis of R".

Basis computation. ... compute a basis for the subspace spanned by a given
set of Euclidean vectors.

Dimension. ... compute the dimension of a subspace of R".

Polynomial basis computation. ... compute a basis for the subspace
spanned by a given set of polynomials or matrices.

Basis of solution space. ... find a basis for the solution set of a
homogeneous system of equations.
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Module V Readiness Assurance Outcomes
Before beginning this module, each student should be able to...

Add Euclidean vectors and multiply Euclidean vectors by scalars.

Add complex numbers and multiply complex numbers by scalars.

Add polynomials and multiply polynomials by scalars.

Perform basic manipulations of augmented matrices and linear systems
E1,E2,E3.
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The following resources will help you prepare for this module.

Adding and subtracting Euclidean vectors (Khan Acaemdy):
http://bit.ly/2y8A0wa

Linear combinations of Euclidean vectors (Khan Academy):
http://bit.ly/2nK3wne

Adding and subtracting complex numbers (Khan Academy):
http://bit.ly/1PE3ZMQ

Adding and subtracting polynomials (Khan Academy):
http://bit.ly/2d5SLGZ


http://bit.ly/2y8AOwa
http://bit.ly/2nK3wne
http://bit.ly/1PE3ZMQ
http://bit.ly/2d5SLGZ
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Observation V.1
Several properties of the real numbers, such as commutivity:

Module V

Xt+ty=y+x

also hold for Eudlicean vectors with multiple components:

ME R
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Activity V.2 (~20 min) Consider each of the following properties of the real numbers
R!. Label each property as valid if the property also holds for two-dimensional Euclidean
Module V/ vectors u,v,w € R? and scalars a, b € R, and invalid if it does not.

Ou+(v+w)=(u+v)+w.
@utv=v+u
© There exists some Z where v+z = v.
@ There exists some —v where
v+ (-v)=z
© Ifu#v, then (u+v) is the only
vector equally distant from both u and
v

@ a(bv) = (ab)v.
@ =V

® If u # 0, then there exists some scalar
¢ such that cu = v.

O a(u+v)=au-+av.

@ (a+ b)v=av+ bv.
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A vector space V is any collection of mathematical objects with associated
addition & and scalar multiplication ® operations that satisfy the following
properties. Let u,v,w belong to V, and let a, b be scalar numbers.

Module V

e Addition is associative:
uo(vow)=(udv)ow.

e Addition is commutative:
udvV=vou.

e Additive |dent|ty exnsts There

exists some Z where V D Z = V

e Additive inverses exist: There
exists some —v where
v (—v) =z

Scalar multiplication is
associative:
a®(bov)=(ab) O V.

Scalar multiplication identity
exists: 1OV =V.

Scalar mult. distributes over
vector addition:

a0 UBV)=aludaov.
Scalar mult. distributes over
scalar addition:

(a4 b)OV =avd bv.



Linear Algebra

Clontz &

Lewis

Observation V.4

Module V .
o Every Euclidean vector space

X1
n x2
R" = . X1,X0,...,%Xp € R

Xn

satisfies all eight requirements for the usual definitions of addition and scalar
multiplication, but we will also study other types of vector spaces.
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Observation V.5

Module V .
o The space of m x n matrices

d11 412 - din
a1 a2 - azn

Mm,n: . . . . 811,...,amn€R
dml dm2 *°°  dmn

satisfies all eight requirements for component-wise addition and scalar
multiplication.
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Remark V.6
Previously, we defined a vector space V to be any collection of mathematical
objects with associated addition and scalar multiplication operations that satisfy

the following eight properties for all u,v,w in V, and all scalars (i.e. real numbers)
a,b.

ud (vew) =

Addition is associative:
(usv)ow

Addition is commutative:
uovV=vaou
Additive |dent|ty exnsts There

exists some Z where V D Z = V

Additive inverses exist: There
exists some —v where

v (—-v) =z

Scalar multiplication is
associative:
a®(bov)=(ab) O V.

Scalar multiplication identity
exists: 1OV =V.

Scalar mult. distributes over
vector addition:
aOUBV)=acudaov.
Scalar mult. distributes over
scalar addition:

(a+b)OV =av® bv.
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Remark V.7
Every Euclidean space R” is a vector space, but there are other examples of vector

spaces as well.

For example, consider the set C of complex numbers with the usual defintions of
addition and scalar multiplication, and let u=a+ bi,v=c+di and w = e + fi.
Then

a+ bi) + ((c + di) + (e + fi))
a+ bi) + ((c +e)+ (d + £)i)

u+(v+w) = (
= (
=(a+c+e)+(b+d+f)i
(
= (

(a+c)+(b+d)) (e + fi)
u+v)+

All eight properties can be verified in this way.
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Remark V.8

The following sets are just a few examples of vector spaces, with the usual/natural
operations for addition and scalar multiplication.

Module V

e R Euclidean vectors with n components.

e C: Complex numbers.

® My, n: Matrices of real numbers with m rows and n columns.
e P". Polynomials of degree n or less.

e P: Polynomials of any degree.

C(R): Real-valued continuous functions.
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Activity V.9 (~20 min) Consider the set V = {(x,y) |y = €} with operations
defined by

Module V (x,¥)®(z,w) = (x+ z,yw) cO(x,y) = (cx,y°)
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Module V

Activity V.9 (~20 min) Consider the set V = {(x,y) |y = €} with operations
defined by

(x,y) @ (z,w) = (x + z,yw) cO(x,y) = (ex,¥°)

Part 1: Show that V satisfies the distribution property
(a+b)ov=(a0Vv)Dd(bOV)

by substituting v = (x, y) and showing both sides simplify to the same expression.
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Module V

Activity V.9 (~20 min) Consider the set V = {(x,y) |y = €} with operations
defined by

(x,y) @ (z,w) = (x + z,yw) cO(x,y) = (ex,¥°)

Part 1: Show that V satisfies the distribution property
(a+b)ov=(a0Vv)Dd(bOV)

by substituting v = (x, y) and showing both sides simplify to the same expression.
Part 2: Show that V' contains an additive identity element satisfying

(y)oz=(xy)

for all (x,y) € V by choosing appropriate values for z = (7, 7).



Linear Algebra Remark V.].O

Clontz & It turns out V = {(x,y) |y = €*} with operations defined by

Lewis

() @ (z,w) = (x + z,yw)

Module V satisifes all eight properties.

e Addition is associative:
uo(vow)=uav)ow.

e Addition is commutative:
udvV=vadu.

e Additive |dent|ty exists: There

exists some z where v z = v.

e Additive inverses exist: There
exists some —v where
vo(-v)=z

Thus, V is a vector space.

cO(xy) = (ex,¥9)

Scalar multiplication is
associative:
a®(bov)=(ab)Ov.
Scalar multiplication identity
exists: 1OV =v.

Scalar mult. distributes over
vector addition:
aOUBV)=acudaov.
Scalar mult. distributes over
scalar addition:
(a+b)OV=av® bv.
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Module V Activity V.11 (~15 min) Let V = {(x,y) | x,y € R} have operations defined by

(xy)@(z,w) = (x+y+2z+w,x*+2%) cO(xy)=(xy+c—1).
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Module V Activity V.11 (~15 min) Let V = {(x,y) | x,y € R} have operations defined by
(xy)@(z,w) = (x+y+2z+w,x*+2%) cO(xy)=(xy+c—1).

Part 1: Show that 1 is the scalar multiplication identity element by simplifying
10 (x,y) to (x,y).
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Module V

Activity V.11 (~15 min) Let V = {(x,y) | x,y € R} have operations defined by
()@ (zw) = (x+y+z+w,x* +27) cO(xy)="y+c—1)

Part 1: Show that 1 is the scalar multiplication identity element by simplifying

1 (x,y) to (x,y).

Part 2: Show that V does not have an additive identity element by showing that
(0,—1) ®z # (0, —1) no matter how z = (z1, z) is chosen.
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Module V

Activity V.11 (~15 min) Let V = {(x,y) | x,y € R} have operations defined by
()@ (zw) = (x+y+z+w,x* +27) cO(xy)="y+c—1)

Part 1: Show that 1 is the scalar multiplication identity element by simplifying

1 (x,y) to (x,y).

Part 2: Show that V does not have an additive identity element by showing that
(0,—1) ®z # (0, —1) no matter how z = (z1, z) is chosen.

Part 3: Is V' a vector space?
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Definition V.12
e v A linear combination of a set of vectors {vi,vs,...,Vy,} is given by
u N —_ —_ . -
c1v1 + oV + - -+ + ¢V, for any choice of scalar multiples c1, ¢, ..., Cm.
3 1 1
For example, we can say |0] is a linear combination of the vectors |—1| and |2
5 2 1
since

3 1 1
O =2|-1|+1|2
5 2 1
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Definition V.13

Vodule \ The span of a set of vectors is the collection of all linear combinations of that set:

span{Vi,Vo,...,Vm} = {civi + covo + - - - + cmVm | ¢; € R}.

For example:

1 1 1 1
span 11,12 =<cal|-1|+b|2||a,beR
2 1 2 1
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Module V Activity V.14 (~10 min) Consider span { B] }
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Module V

Activity V.14 (~10 min) Consider span { B] }

Part 1: Sketch

i N R

|

0
0

|
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Module V Activity V.14 (~10 min) Consider span { B] }

Part 1: Sketch )

1 1 1 3 1 0 1 -2
ot SO e L R R H R B
Part 2: Sketch a representation of all the vectors belonging to

in the xy plane. ]
1 1 .
span { [2} } = {a [2} ac R} in the xy plane.
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Activity V.15 (~10 min) Consider span { B] , [_11] }

Module V
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Module V

Activity V.15 (~10 min) Consider span { B] ,

Bl

Part 1: Sketch the following linear combinations in the xy plane.

el el el

dE!

-1
1

|
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Module V

Activity V.15 (~10 min) Consider span { B] ,

Part 1: Sketch the following linear combinations
1 -1
o]

1 -1

2l [3]

-1

. H 1
Part 2: Sketch a representation of all the vectors belonging to span { [2] , [

in the xy plane.

ol ol

|l

Bl

in the xy plane.

oo

-1
1

)
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Module V

Activity V.16 (~5 min) Sketch a representation of all the vectors belonging to

an 6 -3 in the xy plane
sp a4l 2 y P .
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Remark V.17
Recall these definitions from last class:
Module V e A linear combination of vectors is given by adding scalar multiples of those
vectors, such as:
3 1 1
0| =2 |-1|+1(2
5 2 1
e The span of a set of vectors is the collection of all linear combinations of that
set, such as:
1 1 1 1
span —-11,12 =qal|-1|+b|2||a,beR

2 1 2 1
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Module V

-1
Activity V.18 (~15 min) The vector | —6| belongs to span
1
exactly when there exists a solution to the vector equation
1 -1 -1
x| 0| +x|-3|=]-6|.

-3 2 1

-3

-1
-3
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-1 1 -1
Activity V.18 (~15 min) The vector | —6| belongs to span 0,3
Module V 1 -3 2
exactly when there exists a solution to the vector equation
1 -1 -1
x| O0f|4+x|[-3|=|-6].
-3 2 1

Part 1: Reinterpret this vector equation as a system of linear equations.
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-1 1 -1
Activity V.18 (~15 min) The vector | —6| belongs to span 0,3
Module V 1 -3 2
exactly when there exists a solution to the vector equation
1 -1 -1
x| O0f|4+x|[-3|=|-6].
-3 2 1

Part 1: Reinterpret this vector equation as a system of linear equations.
Part 2: Find its solution set, using technology to find RREF of its corresponding
augmented matrix.



Linear Algebra

Clontz &

Lewis

Module V

-1 1 -1
Activity V.18 (~15 min) The vector | —6| belongs to span 0,3
1 -3 2
exactly when there exists a solution to the vector equation
1 -1 -1
x| O0f|4+x|[-3|=|-6].
-3 2 1

Part 1: Reinterpret this vector equation as a system of linear equations.
Part 2: Find its solution set, using technology to find RREF of its corresponding
augmented matrix.
-1 1 -1
Part 3: Given this solution set, does | —6| belong to span 01],|=3] 7
1 -3 2
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Module V

Fact V.19
A vector b belongs to span{vy,...,v,} if and only if the linear system

corresponding to [vi ... v, |b] is consistent.

Put another way, b belongs to span{vy,...,v,} exactly when RREF[v; ... v, |B]
doesn’t have a row [0 - -- 0] 1] representing the contradiction 0 = 1.
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Module V

Activity V.20 (~10 min) Determine if

by row-reducing an appropriate matrix.

1
5

belongs to span
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Module V

Activity V.21 (~5 min) Determine if

row-reducing an appropriate matrix.

-1
—9| belongs to span
0



Linear Algebra

Clontz &

Lewis

Module V

Activity V.22 (~10 min) Does the third-degree polynomial 3y® — 2y? + y + 5 in
P3 belong to span{y® — 3y +2, —y3 — 3y? + 2y 4 217
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Module V

Activity V.22 (~10 min) Does the third-degree polynomial 3y® — 2y? + y + 5 in
P3 belong to span{y® — 3y +2, —y3 — 3y? + 2y 4 217

Part 1: Reinterpret this question as an equivalent exercise involving Euclidean
vectors in R*. (Hint: What four numbers must you know to write a P3
polynomial?)
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Module V

Activity V.22 (~10 min) Does the third-degree polynomial 3y® — 2y? + y + 5 in
P3 belong to span{y® — 3y +2, —y3 — 3y? + 2y 4 217

Part 1: Reinterpret this question as an equivalent exercise involving Euclidean
vectors in R*. (Hint: What four numbers must you know to write a P3
polynomial?)

Part 2: Solve this equivalent exercise, and use its solution to answer the original
question.
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Module V

Activity V.23 (~5 min) Does the matrix [3

wllL

} belong to
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Module V

Activity V.24 (~5 min) Does the complex number 2/ belong to
span{—3+1i,6 — 2i}?
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Module V

Observation V.25
Any single non-zero vector/number x in R! spans R!, since R! = {cx|c € R}.




Linear Algebra
. Activity V.26 (~5 min) How many vectors are required to span R?? Sketch a
ontz

Lewis drawing in the xy plane to support your answer.

Module V

€

A~~~ TN N T T
vve/vv
A W N =

nfinitely Many
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s Activity V.27 (~5 min) How many vectors are required to span R3?

Module V

TN N T T
\_/\_/Q/\_/v
S A 0N

e) Infinitely Many
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Fact V.28

At least n vectors are required to span R”.
Module V
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7
o Activity V.29 (~15 min) Choose any vector | 7 | in R3 that is not in
7
1 -2
span —-1({,]0 by using technology to verify that
0 1

? 1 00
RREF |-1 0 | 7| = [0 1]0[. (Why does this work?)
? 0 0|1
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Fact V.30
Moddle v The set {v1,...,Vy,} fails to span all of R” exactly when RREF[v; ... V] has a
non-pivot row of zeros.
1 -2 10
-1 0|~ 1|01
0 1 00

1 0]0
= |—-1 0 |b| ~ |0 1]|0]| for some choice of vector | b
0 01 c
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Module V

Activity V.31 (~5 min) Consider the set of vectors

2 1 2 0 3
B 3 —4 0 3 13 4 5
S= ol 13l 1ol l5] |7 . Does R* = span §7
-1 0 3 7 16
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Module V

Activity V.32 (~10 min) Consider the set of third-degree polynomials

S={2x3+3x% —1,2x3 + 3,3x> 4+ 13x° + 7x + 16,
—x3 41052 + 7x + 14,4x% + 3x° + 2}.

Does P3 = span S? (Hint: first rewrite the question so it is about Euclidean
vectors. )
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Module V

Activity V.33 (~5 min) Consider the set of matrices

{10 <16 )

Does M, > = span §7
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Module V RN —
Activity V.34 (~5 min) Let v1,va,v3 € R’ be three vectors, and suppose w is

another vector with w € span {v1,v>,v3}. What can you conclude about
span {Wl,vl,\_1\2,73} ?

(a) span{w,v1,Vvz,v3} is larger than span {vi, vy, vs}.

(b) span{w,v1,V2,v3} = span {vy,vo,v3}.

(c) span{w,vy, v, v3} is smaller than span {vi,Vv2,v3}.
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e Definition V.35
A subset of a vector space is called a subspace if it is a vector space on its own.

Module V For example, the span of these two vectors forms a planar subspace inside of the
larger vector space R3.
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Fact V.36 R
Module V Any subset S of a vector space V that contains the additive identity 0 satisfies the

eight vector space properties automatically, since it is a collection of known vectors.

However, to verify that it's a subspace, we need to check that addition and
multiplication still make sense using only vectors from S. So we need to check two

things:
e The set is closed under addition: for any X,y € S, the sum X +y is also in S.

e The set is closed under scalar multiplication: for any x € S and scalar
c € R, the product cx is also in S.
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X
Activity V.37 (~15 min) Let S=< |y| |[x+2y+2z=0
z

Module V
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Module V

X

Activity V.37 (~15min) Let S=< |y| |x+2y+z=0
z
X a
Part 1: Let v= |y| and w = |b| be vectorsin S, so x +2y +z =0 and
z c
X+ a
a+2b+c=0. Show that v+w = |y + b| also belongs to S by verifying that
z+c

(x+a)+2(y+b)+(z+c)=0.
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Module V

X

Activity V.37 (~15min) Let S=< |y| |x+2y+z=0
z
X a
Part 1: Let v= |y| and w = |b| be vectorsin S, so x +2y +z =0 and
z c
X+ a
a+2b+c=0. Show that v+w = |y + b| also belongs to S by verifying that
z+c
(x+a)+2(y+b)+(z+c)=0.
X cX
Part 2: Letv= |y| €S, s0 x4 2y + z=0. Show that cv = |cy| also belongs
z cz

to S for any ¢ € R by verifying an appropriate equation.
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Module V

X
Activity V.37 (~15min) Let S=< |y| |x+2y+z=0
z
X a
Part 1: Let v= |y| and w = |b| be vectorsin S, so x +2y +z =0 and
z c
X+ a
a+2b+c=0. Show that v+w = |y + b| also belongs to S by verifying that
z+c
(x+a)+2(y+b)+(z+c)=0.
X cX
Part 2: Letv= |y| €S, s0 x4 2y + z=0. Show that cv = |cy| also belongs
z cz

to S for any ¢ € R by verifying an appropriate equation.
Part 3: Is S is a subspace of R3?
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Module V
X
Activity V.38 (~10 min) Let S= 1< |y| |x+ 2y +z=4 ). Choose a vector
z
?
v= 7] inS and a real number ¢ = 7, and show that cvisn’'tin S. Is S a
?

subspace of R3?
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Module V

Remark V.39
Since 0 is a scalar and Ov = z for any vector v, a nonempty set that is closed under
scalar multiplication must contain the zero vector z for that vector space.

Put another way, you can check any of the following to show that a nonempty
subset W isn't a subspace:

e Show that 0 & W.

e Find u,v € W such thatu+v ¢ W.

e Find c € R,v € W such that cv ¢ W.
If you cannot do any of these, then W can be proven to be a subspace by doing
the following:

e Prove that u+v € W whenever u,v € W.

e Prove that cv € W whenever c € R,v € W.
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Module V

Activity V.40 (~20 min) Consider these subsets of R*:

X X
R=<¢|yl|ly=2z+1 S=91y||y=I
V4 V4

T =
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Module V

Activity V.40 (~20 min) Consider these subsets of R*:

X X
R=<¢|yl|ly=2z+1 S=91y||y=I
V4 V4

Part 1: Show R isn’t a subspace by showing that 0 ¢ R.

T =
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Module V

Activity V.40 (~20 min) Consider these subsets of R*:

X X X
R=4¢\|y|l|ly=2z+1 S=4q1y||y=1z T=1<|y|l|z=xy
Z Z Z

Part 1: Show R isn’t a subspace by showing that 0 ¢ R.

Part 2: Show S isn't a subspace by finding two vectors u,v € S such that
utvgs.
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Module V

Activity V.40 (~20 min) Consider these subsets of R*:

X X X
R=4¢\|y|l|ly=2z+1 S=4q1y||y=1z T=1<|y|l|z=xy
Z Z Z

Part 1: Show R isn't a subspace by showing that 0 € R.

Part 2: Show S isn't a subspace by finding two vectors u,v € S such that
utvgs.

Part 3: Show T isn't a subspace by finding a vector v € T such that 2v & T.
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Module V

Activity V.41 (~5 min) Let W be a subspace of a vector space V. How are
span W and W related?

(a) span W is bigger than W
(b) span W is the same as W
(c) span W is smaller than W
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Module V
Fact V.42
If S is any subset of a vector space V/, then since span S collects all possible linear
combinations, span S is automatically a subspace of V.

In fact, span S is always the smallest subspace of V that contains all the vectors in
S.
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Module V

Activity V.43 (~10 min) Consider the two sets

2 1
5: 3 5 1 T:
1 4

Which of the following is true?

(A) spanS is bigger than span T.
(B) span$S and span T are the same size.

(C) span§ is smaller than span T.
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Clontz & Definition V.44

Lewis

We say that a set of vectors is linearly dependent if one vector in the set belongs
to the span of the others. Otherwise, we say the set is linearly independent.

Module V

You can think of linearly dependent sets as containing a redundant vector, in the
sense that you can drop a vector out without reducing the span of the set. In the
above image, all three vectors lay on the same planar subspace, but only two
vectors are needed to span the plane, so the set is linearly dependent.



Linear Algebra

Clontz &
Lewis

Module V

Activity V.45 (~10 min) Let u,v,w be vectors in R". Suppose 3u — 5v = w, so
the set {u,v,w} is Iinearlyjiependent. Which of the following is true of the vector
equation xu + yv +zw =0 ?

(A) It is consistent with one solution

(B) It is consistent with infinitely many solutions

(C) It is inconsistent.
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Module V

Fact V.46
For any vector space, the set {v1,...v,} is linearly dependent if and only if
X1V1 + - - + X,V = Z is consistent with infinitely many solutions.
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o Activity V.47 (~10 min) Find
2 2 3 -1 4]0
Module 3 0 13 10 30
RREF ' o 0 7 7 0lo
~1 3 16 14 20

and mark the part of the matrix that demonstrates that

2 2 3 -1 4

S 3 0 13 10 3
ol (o]’ |7 | 71| |O

-1 3 16 14 2

is linearly dependent (the part that shows its linear system has infinitely many
solutions).
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Module V

Fact V.48
A set of Euclidean vectors {v1,...v,} is linearly dependent if and only if
RREF [71 7,,] has a column without a pivot position.
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Module V

Observation V.49
Compare the following results:

e A set of R™ vectors {vi,...v,} is linearly independent if and only if
RREF [71 7,,] has all pivot columns.

e A set of R™ vectors {vi,...v,} spans R™ if and only if RREF [71
has all pivot rows.

—

Vo]
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Module V

Activity V.50 (~5 min) Is the set of Euclidean vectors

—4 1 1 3
2 2 10 4
31,(0],(10(, |7 linearly dependent or linearly independent?
0 0 2 2
-1 3 6 1
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Module V

Activity V.51 (~10 min) Is the set of polynomials {X3 +1,x% 4+ 2x, x> + Tx + 4}
linearly dependent or linearly independent?
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Module V

Activity V.52 (~5 min) What is the largest number of R* vectors that can form a
linearly independent set?

(a) 3
(b) 4
(c) 5
(d) You can have infinitely many vectors and still be linearly independent.
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Activity V.53 (~5 min) What is the largest number of

Module V
P*={ax*+ b + ox® + dx + e|a,b,c,d, e € R}

vectors that can form a linearly independent set?
(a) 3

(b) 4
(c) 5
(d) You can have infinitely many vectors and still be linearly independent.
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Activity V.54 (~5 min) What is the largest number of

Module V
P = {f(x)| f(x) is any polynomial}

vectors that can form a linearly independent set?
(a) 3

(b) 4
(c) 5
(d) You can have infinitely many vectors and still be linearly independent.
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et Definition V.55
A basis is a linearly independent set that spans a vector space.

Vodule \ The standard basis of R” is the set {ey,...,e,} where
- o
0 1
- 0 R 0
ey = e = |.
0 0
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A basis may be thought of as a collection of building blocks for a vector space,
since every vector in the space can be expressed as a unique linear combination of
Module V basis vectors.

For example, in many calculus courses, vectors in R3 are often expressed in their
component form

(3,-2,4) = | -2

or in their standard basic vector form
3e; — 2ey + 4es = 31 — 27 + 4k.

Since every vector in R3 can be uniquely described as a linear combination of the
vectors in {e1, >, e3}, this set is indeed a basis.
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Activity V.57 (~15 min) Label each of the sets A, B, C, D, E as
e SPANS R* or DOES NOT SPAN R*

e LINEARLY INDEPENDENT or LINEARLY DEPENDENT
e BASIS FOR R* or NOT A BASIS FOR R*

Module V

1
0
0

o O o

OCWOlwoonN

0

by finding RREF for their corresponding matrices.

0

W o onN

II\)O(.O-P
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Module V Activity V.58 (~10 min) If {v1,v2,v3,v4} is a basis for R*, that means
RREF[Vl 727374] doesn’t have a non-pivot column, and doesn’t have a row of
zeros. What is RREF([vy vo V3 v4]?

RREF[v1 V2 V3 V] —

B S e )
N N N Y
N N N Y
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Fact V.59
Module The set {v1,...,vy} is a basis for R” if and only if m = n and

1 0 ... O

B 01 .. 0

RREFvL ...v,] = |. . =

00 ... 1

That is, a basis for R” must have exactly n vectors and its square matrix must
row-reduce to the so-called identity matrix containing all zeros except for a
downward diagonal of ones. (We will learn where the identity matrix gets its name
in a later module.)
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Recall that a subspace of a vector space is a subset that is itself a vector space.

One easy way to construct a subspace is to take the span of set, but a linearly
dependent set contains “redundant” vectors. For example, only two of the three
vectors in the following image are needed to span the planar subspace.

Module V
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Activity V.61 (~10 min) Consider the subspace

2 2 2 1

Module V 3 0 _3 5
— 4
W = span ol 112121 of R*.

1 -1 -3 0
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Activity V.61 (~10 min) Consider the subspace
2 2 2 1
Module V 3 0 _3 5
_ 4
W = span ol 112121 of R*.
1 -1 -3 0
2 2 2 1
3 0 =3 , .
Part 1: Mark the part of RREF 0 1 > 1 that shows that W's spanning
1 -1 -3 0

set is linearly dependent.
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Activity V.61 (~10 min) Consider the subspace
2 2 2 1
Module V 3 0 _3 5
_ 4
W = span ol 112121 of R*.
1 -1 -3 0
2 2 2 1
3 0 =3 , .
Part 1: Mark the part of RREF 0 1 > 1 that shows that W's spanning
1 -1 -3 0

set is linearly dependent.
Part 2: Find a basis for W by removing a vector from its spanning set to make it
linearly independent.



Linear Algebra

Clontz &

Lewis

Module V

Fact V.62
Let S = {vi,...,Vvy}. The easiest basis describing span S is the set of vectors in S
given by the pivot columns of RREF[vy ... v,].

Put another way, to compute a basis for the subspace span S, simply remove the
vectors corresponding to the non-pivot columns of RREF[v; ... v,,]. For example,

since
1 2 3 1) o 1
RREF| 0 -2 -2|=|0 (1 1
-3 1 =2 0 0 0
1 2 3 1 2
the subspace W = span 01],[|-2],]|-2 has 01],]-2 as a
-3 1 -2 -3 1

basis.
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Module V

Activity V.63 (~10 min) Let W be the subspace of R* given by

1 27 [4] T3
3 1| 5] |2
W=spanq | 1|11 3] ]2
“1| 2] lo]| |1

Find a basis for W.



Linear Algebra

Clontz &

Lewis

Module V

Activity V.64 (~10 min) Let W be the subspace of P3 given by
W = span {X3 +3x% 4+ x —1,2x3 — x® + x4+ 2,4x3 + 5x2 —|—3X,3X3—|—2x2—|—2x+1}

Find a basis for W.
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Module V

Observation V.65

In the previous section, we learned that computing a basis for the subspace
span{vi,..., vy}, is as simple as removing the vectors corresponding to the
non-pivot columns of RREF[vy ... v,].

For example, since

1 2 3 (1) o 1
RREF| 0 -2 —2| =10 @ 1
-3 1 =2 0 0 O
1 2 3 1 2
the subspace W = span 01],[|-2]|,]-2 has 01],]-2 as a
-3 1 -2 -3 1

basis.
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Module V

Activity V.66 (~10 min) Let

2
0 -3
1

= O WwN
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Module V

Activity V.66 (~10 min) Let

2
0 -3
1

= O WM

Part 1: Find a basis for span S.

= O WwN
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Module V

Activity V.66 (~10 min) Let

2
0| [-3
1] 2]

~1| -3

)

2
3
0
1

Part 1: Find a basis for span S.
Part 2: Find a basis for span T.

1

= O WwN
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Module V Observation V.67
Even though we found different bases for them, span S and span T are exactly the
same subspace of R*, since

2 2 2 1 2 2 1 2
3 0 -3 5 0 -3 5 3

5= oj’"{1r|’12|]-1 1(’12]"|-1]"|0 =T
1 -1 -3 0 -1 -3 0 1
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Module V

Fact V.68
Any non-trivial vector space has infinitely-many different bases, but all the bases

for a given vector space are exactly the same size.

For example,

17 [o] [1 1 2 3
{e1, ez, e3} and of, (1], |1 and 01l,|-2],]-2
o] [0o] |1 -3 1 5

are all valid bases for R3, and they all contain three vectors.
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Definition V.69
The dimension of a vector space is equal to the size of any basis for the vector

space.

Module V

As you'd expect, R" has dimension n. For example, R3 has dimension 3 because
any basis for R3 such as

1] o] [1 1 2 3
{e1,ez,e3} and of,|1],]|1 and 01|, |-2(,]-2
ol |o] |1 -3 1 5

contains exactly three vectors.
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Activity V.70 (~10 min) Find the dimension of each subspace of R* by finding
Vodule \ RREF for each corresponding matrix.
(27 2] [4] [-3] (27 [2] [3] [-1] [4
span 3 0 3 0 span 3 0 13 10 3
of’|01’]0]° |1 oj|’fof’ |7’ | 7]"]|0
-1 [3] [2] [3] —1] [3] [16] [14] |2
(27 [4] [-3] [3] (57 [-2] [4
span 3 3 0 Kfj span 3 1 5
o710’ 1]]1 ol’lol’|1
__1_ _2_ L 3 5_ __1_ i 3 3
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Fact V.71
Module V . .. . . . . .
‘ Every vector space with finite dimension, that is, every vector space V with a basis
of the form {vi,vs,...,v,} is said to be isomorphic to a Euclidean space R”,

since there exists a natural correspondance between vectors in V' and vectors in R":
G
N N N %]
CiV1 + CVva + - - + CpVv &

Cn
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Module V Observation V.72
We've already been taking advantage of the previous fact by converting polynomials
and matrices into Euclidean vectors. Since P3 and M, > are both four-dimensional:

4

-1
5

4x3 +0x°> —1x+5 < 0 <—>[4 O}
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Module V

Activity V.73 (~5 min) Suppose W is a subspace of P2, and you know that the
set {x3 + x,x?> 4+ 1,x* — x} is a linearly independent subset of W. What can you
conclude about W?

(a) The dimension of W is at most 3.
(b) The dimension of W is exactly 3.
(c) The dimension of W is at least 3.
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Activity V.74 (~5 min) Suppose W is a subspace of P8, and you know that W is
spanned by the six vectors

Module V

{x* —x, X3+ x,x3 + x+ 1,x% +2x,x3, 2x 4 1}.

What can you conclude about W?

(a) The dimension of W is at most 6.
(b) The dimension of W is exactly 6.
(c) The dimension of W is at least 6.
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Module V

Observation V.75
The space of polynomials P (of any degree) has the basis {1,x,x? x3,...}, so it is
a natural example of an infinite-dimensional vector space.

Since P and other infinite-dimensional spaces cannot be treated as an isomorphic

finite-dimensional Euclidean space R", vectors in such spaces cannot be studied by
converting them into Euclidean vectors. Fortunately, most of the examples we will
be interested in for this course will be finite-dimensional.
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Module V

Definition V.76
A homogeneous system of linear equations is one of the form:

aix1+ aexe+ ...+ aipxn =0
arix1+ axpxo+...+ aspxy, =0

amiX1+ ameXo + ...+ amnxn =0
This system is equivalent to the vector equation:
XIV1 4+ XV = 0
and the augmented matrix:
aix a2 -+ ann |0

a1 ax - axn |0

ami am2 - amn |0
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Module V

dl bl
Activity V.77 (~5 min) Note that if | : | and | : | are solutions to
an bn
a+ b
X1+ -+ XpVp = 0 50 is : , since
an + bn

3171+---+a,,7,,:6and b171+---+bn7n:6

implies
(a1+ bu)Vi + - - + (an + bo)Vp = 0.
cai
Similarly, if c e R, | : | is a solution. Thus the solution set of a homogeneous
can
system Is...

a) A basis for R". b) A subspace of R". c) The empty set.



Linear Algebra

Clontz &
Lows Activity V.78 (~10 min) Consider the homogeneous system of equations
X1 + 2xo + x4 =0
Module V 2x1 +4xo — x3 — 2x4 =0

3x1+6x0 —x3— x4 =0



Linear Algebra

Clontz &
Lows Activity V.78 (~10 min) Consider the homogeneous system of equations
X1 + 2xo + x4 =0
Module V 2x1 +4xo — x3 — 2x4 =0

3X1 + 6X2 —X3— X4 =0

Part 1: Find its solution set (a subspace of R*).



Linear Algebra

Clontz &
Lewis Activity V.78 (~10 min) Consider the homogeneous system of equations
X1 + 2xo + x4 =0
Module V 2x1 +4xo — x3 — 2x4 =0

3X1 + 6X2 —X3— X4 =0

Part 1: Find its solution set (a subspace of R*).
Part 2: Rewrite this solution space in the form

+b a,beR
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Clontz &

Lewis Fact V.?g
The coefficients of the free variables in the solution set of a linear system always
yield linearly independent vectors.

Module V

Thus if
-2 -1
1 0
al, +b 4 a,beR
0 1

is the solution space for a homoegeneous system, then

is a basis for the solution space.
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Module V Activity V.80 (~10 min) Consider the homogeneous system of equations

x1 — 3x2 + 2x3 =0
2x1 — 6x0 +4x3 +3x4 =0
—2x1 + 6x0 —4x3 — 4x4 =0

Find a basis for its solution space.
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Module A

How can

we understand linear maps algebraically?
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Module A

At the end of this module, students will be able to...
Al. Linear map verification. ... determine if a map between vector spaces of
polynomials is linear or not.

A2. Linear maps and matrices. ... translate back and forth between a linear
transformation of Euclidean spaces and its standard matrix, and perform
related computations.

A3. Kernel and Image. ... compute a basis for the kernel and a basis for the
image of a linear map.

A4. Injectivity and surjectivity. ... determine if a given linear map is injective
and/or surjective.



Linear Algebra

Clontz &
Lewis
Readiness Assurance Outcomes
Before beginning this module, each student should be able to...
Module A e State the definition of a spanning set, and determine if a set of Euclidean

vectors spans R" V3.

e State the definition of linear independence, and determine if a set of Euclidean
vectors is linearly dependent or independent V5.

e State the definition of a basis, and determine if a set of Euclidean vectors is a
basis V6,V7.

e Find a basis of the solution space to a homogeneous system of linear equations
V10.
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Module A

Definition A.1
A linear transformation (also known as a linear map) is a map between vector
spaces that preserves the vector space operations. More precisely, if V and W are
vector spaces, amap T : V — W is called a linear transformation if

® T(v+w)=T(v)+ T(w) for any v,w € V.

® T(cv)=cT(v)foranyceR,ve V.
In other words, a map is linear when vector space operations can be applied before
or after the transformation without affecting the result.
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Definition A.2
Given a linear transformation T : V — W, V is called the domain of T and W is
Vi called the co-domain of T.

Linear transformation T : R3 — R?

- 'S

SN

T(v)

- co-domain RR?
domain R3
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Module A

Example A.3
Let T : R3 — R? be given by

T

To show that T is linear, we must verify...

X u X+ u]
Tl |y|+|v =T | |y+v — {(X"i_?i’() _+(5)+ W)]
z w Z 4+ w]| y
x—z [u—w]|  [(x+u)—(z+w)
! [ a1 R T R
And also
x CX X —cz x X —z
Tlcly =T |cy —[3Cy]andcT y _C[3y]_[
z cz z

Therefore T is a linear transformation.

|

X — CczZ



Linear Algebra

Example A.4
Comtz& et T :R? — R* be given by

Lewis

X+Yy
T X _ x2
y y+3
Module A X
y—2

To show that T is not linear, we only need to find one counterexample.

-
N
| ——|
= O
| I
+
| ——
w N
|
~~_
I
-
7N\
1
BN
| IS
~__
I
o ~N A~ O

(i)« (B])- ' ]

Since the resulting vectors are different, T is not a linear transformation.



Linear Algebra

T Fact A.5
Lewis A map between Euclidean spaces T : R" — R™ is linear exactly when every
component of the output is a linear combination of the variables of R".

For example, the following map is definitely linear because x — z and 3y are linear
Module A combinations of x, y, z:

T x _|x—2z|  |Ix+0y -1z
Y1) =1 3y | = lox+3y+0z

But this map is not linear because x2, y + 3, and y — 2¥ are not linear
combinations (even though x + y is):
x+y
(b=,
T =
y y+3

y —2%
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Activity A.6 (~5 min) Recall the following rules from calculus, where D : P — P
is the derivative map defined by D(f(x)) = f’(x) for each polynomial f.

Module A
D(f +g)=f'(x)+g'(x)
D(cf(x)) = cf’(x)
What can we conclude from these rules?
a) P is not a vector space

b) D is a linear map

c) D is not a linear map
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Nl A Activity A.7 (~10 min) Let the polynomial maps S : P* — P3 and T : P* — P3
be defined by
S(f(x)) = 2f'(x) — f"(x) T(f(x)) = f'(x) +x3

Compute S(x* + x), S(x*) + S(x), T(x*+ x), and T(x*) + T(x). Which of these
maps is definitely not linear?
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Fact A.8
Mg A If L: V — W is linear, then L(z) = L(Ov) = 0L(v) = z where Z is the additive
identity of the vector spaces V, W.

Put another way, an easy way to prove that a map like T(f(x)) = f/(x) + x3 can't
be linear is because

d
T(O):&[O]—i—x3:0—|—x3zx37§0.
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Module A

Observation A.9
Showing L: V — W is not a linear transformation can be done by finding an
example for any one of the following.
e Show L(z) # z (where z is the additive identity of L and W).
e Find v,w € V such that L(v +w) # L(v) + L(w).
e Find v € V and ¢ € R such that L(cv) # cL(v).
Otherwise, L can be shown to be linear by proving the following in general.
e Forallv,we V, L(v+w)=L(v)+ L(w).
e Forallve Vand c €R, L(cv) = cL(v).

Note the similarities between this process and showing that a subset of a vector
space is/isn't a subspace.
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Clontz &

Lewis

Activity A.10 (~15 min) Continue to consider S : P* — P3 defined by

Module A S(f(x)) = 2f/(X) — f”(X)
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Activity A.10 (~15 min) Continue to consider S : P* — P3 defined by

Module A S(f(x)) = 2f/(X) — f”(X)
Part 1: Verify that
S(f(x) + g(x)) = 2f'(x) +28"(x) — f"(x) — g"(x)

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.
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Module A

Activity A.10 (~15 min) Continue to consider S : P* — P3 defined by

S(f(x)) = 2f'(x) — f'(x)
Part 1: Verify that
S(f(x) + &(x)) = 2f'(x) +28"(x) — £"(x) — g"(x)

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.
Part 2: Verify that S(cf(x)) is equal to cS(f(x)) for all real numbers ¢ and
polynomials f.
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Module A

Activity A.10 (~15 min) Continue to consider S : P* — P3 defined by

S(f(x)) = 2f'(x) — f'(x)
Part 1: Verify that

S(F(x) + &(x)) = 2f'(x) + 2¢'(x) — f"(x) — g"(x)

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.

Part 2: Verify that S(cf(x)) is equal to cS(f(x)) for all real numbers ¢ and
polynomials f.

Part 3: Is S linear?
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Clontz &

Lewis

Activity A.11 (~20 min) Let the polynomial maps S: P — P and T : P — P be
Module A defined by

S(f(x)) = (f(x))? T(f(x)) = 3xf(x°)
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Activity A.11 (~20 min) Let the polynomial maps S: P — P and T : P — P be
Module A defined by

S(f(x)) = (f(x))? T(f(x)) = 3xf(x°)

Part 1: Note that S(0) =0 and T(0) = 0. So instead, show that
S(x+1) # S(x) + S(1) to verify that S is not linear.
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Activity A.11 (~20 min) Let the polynomial maps S: P — P and T : P — P be
Module A defined by

S(f(x)) = (f(x))? T(f(x)) = 3xf(x°)

Part 1: Note that S(0) =0 and T(0) = 0. So instead, show that
S(x+1) # S(x) + S(1) to verify that S is not linear.
Part 2: Prove that T is linear by verifying that

T(f(x) + 8(x)) = T(f(x)) + T(g(x)) and T(cf(x)) = cT(f(x)).
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Mol A Remark A.12
Recall that a linear map T : V — W satisfies

® T(v+w)=T(v)+ T(w) forany v,w € V.

® T(cv)=cT(v)foranyce R,ve V.
In other words, a map is linear when vector space operations can be applied before
or after the transformation without affecting the result.
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Activity A.13 (~5 min) Suppose T : R3 — R? is a linear map, and you know

= TR
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Module A

Activity A.14 (~5 min) Suppose T : R3 — R? is a linear map, and you know

() Bl () B e ()
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Activity A.15 (~5 min) Suppose T : R3 — R? is a linear map, and you know

IR R )
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Activity A.16 (~5 min) Suppose T : R3 — R? is a linear map, and you know

1 0
T! 10 :m and T | [0 :[_23].
Module A 0 1
0
What piece of information would help you compute T 4 ?
-1
[0 1
(a) Thevalueof T | |—4]| |. (c) The valueof T [ (1] ].
| 0 1
[0 (d) Any of the above.
(b) The valueof T | |1
0
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Fact A.17 N N
ool A Consider any basis {by,...,b,} for V. Since every vector v can be written as a
linear combination of basis vectors, x;b; + - - - 4+ x,b,, we may compute T(V) as
follows:

T(v) = T(xtby + - + xnbp) = x1 T(b1) + - - - + 3, T (by).

Therefore any linear transformation T : V — W can be defined by just describing

the values of T(b;).
Put another way, the images of the basis vectors determine the transformation T.
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Module A

Definition A.18

Since linear transformation T : R” — R™ is determined by the standard basis
{e1,...,e,}, it's convenient to store this information in the m x n standard
matrix [T(e1) --- T(e,)].

For example, let T : R3 — R? be the linear map determined by the following values
for T applied to the standard basis of R3.

rer-r({)-8 re-r({)-[ re-r(E)-k

Then the standard matrix corresponding to T is

Ty TE) TE) =[5 o).
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Module A Activity A.19 (~3 min) Let T : R* — R3 be the linear transformation given by
0 -3 4 2
T(er)=|3 T(e2)=1]0 T(e3)=|-2 T(eq) = |0
-2 1 1 0

Write the standard matrix [T(e1) --- T(e,)] for T.
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Activity A.20 (~5 min) Let T : R3 — R2 be the linear transformation given by
Module A
X
x+ 3z
T )z/ - {2)( —y— 42}
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Activity A.20 (~5 min) Let T : R3 — R2 be the linear transformation given by
Module A
X
x+ 3z
V)= {2)( —y— 42}

Part 1: Compute T(e;), T(ez), and T(e3).
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Activity A.20 (~5 min) Let T : R3 — R2 be the linear transformation given by
Module A
X
x+ 3z
V)= {2)( —y— 42}

Part 1: Compute T(e;), T(ez), and T(e3).
Part 2: Find the standard matrix for T.
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Fact A.21

Because every linear map T : R™ — R” has a linear combination of the variables in
each component, and thus T (e;) yields exactly the coefficients of x;, the standard
matrix for T is simply an ordered list of the coefficients of the x;:

Module A

ax + by + cz + dw A_|? b ¢ d
ex + fy + gz + hw -

-
S N X X
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Activity A.22 (~5 min) Let T : R3 — R3 be the linear transformation given by
the standard matrix
3 -2 -1
Module A
4 5 2

0 -2 1
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Activity A.22 (~5 min) Let T : R3 — R3 be the linear transformation given by
the standard matrix
3 -2 -1
Module A
4 5 2
0 -2 1

Part 1: Compute T | |y
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Activity A.22 (~5 min) Let T : R3 — R3 be the linear transformation given by
the standard matrix
3 -2 -1
Module A
4 5 2
0 -2 1
-
Part 1: Compute T | |y
z

Part 2: Compute T

W N =
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Module A

Fact A.23
To quickly compute T(v) from its standard matrix A, multiply and add the entries
of each row of A with the vector v. For example, if T has the standard matrix

1 2 3
A=10 1 =2
2 -1 0
X
then for v = [y | we will write
z
1 2 3 X Ix+2y +3z
Tv)=Av= |0 1 =2 |y|=|0x+1y—2z
2 -1 0 z 2x — 1y + 0z
3
and forv= | 0 | we will write
-2
1 2 3 3 1(3) +2(0) +3(—2) -3
Tv)=Av=1{0 1 -2 0| =1(03)+1(0)—2(-2)| = | 4
2 -1 0 -2 2(3) — 1(0) + 0(—2) 6



Linear Algebra

Clonte & Activity A.24 (~15 min) Compute the following linear transformations of vectors
given their standard matrices.
4 3
1 . 0 -1
Module A T1 for the standard matrix A; =
2 1 1
30
1
1 . 4 3 0 -1
T> 0 for the standard matrix A, = [1 13 0 ]
-3
: 0 13
T3 -2 for the standard matrix Az = 501 1
0 3 0 O
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Definition A.25
Let T : V — W be a linear transformation. The kernel of T is an important
Module A subspace of V defined by

ker T={veV|T()=z}

ker T
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Activity A.26 (~5 min) Let T : R? — R3 be given by
. X 10
T ([ }) = |y with standard matrix [0 1
Module A y 0 0 0

Which of these subspaces of R? describes ker T, the set of all vectors that
transform into 07

o {[7]]ox)
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Module A

Activity A.27 (~5 min) Let T : R® — R? be given by

X
T| |y = [;] with standard matrix [(1) (1) 8}
z

Which of these subspaces of R3 describes ker T, the set of all vectors that
transform into 07

o
o

a) OflaeR c) 0
El 0
[a] P%
b) al|laeR d) R¥={ |y| |x,y,zeR

0 z
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Activity A.28 (~10 min) Let T : R3 — R? be the linear transformation given by
the standard matrix

Module A 3 4 -1
A:L 2 1]'
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Activity A.28 (~10 min) Let T : R3 — R? be the linear transformation given by
the standard matrix
Module A A— 3 4 —1
N L 2 1 ]
x T+7+7] o] .o .
Part 1: Set T | |y =l24247" o to find a linear system of equations
z

whose solution set is the kernel.
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Activity A.28 (~10 min) Let T : R3 — R? be the linear transformation given by
the standard matrix
Module A A— 3 4 —1
N L 2 1 ] ’
x T+7+7] o] .o .
Part 1: Set T | |y =l24247" o to find a linear system of equations
z

whose solution set is the kernel.
Part 2: Use RREF(A) to solve this homogeneous system of equations and find a
basis for the kernel of T.
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N Definition A.29
Module E Let T: V — W be a linear transformation. The image of T is an important
Module V subspace of W defined by
Module A
Module M Im T = {w € W | there is some v € V with T(v) = w}
Module G
Vi B In the examples below, the left example's image is all of R2, but the right

example’s image is a planar subspace of R3.

e WOk e
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Module A

Activity A.30 (~5 min) Let T : R> — R3 be given by

X
T <[X}> = |y with standard matrix
Y 0

O O

0
1
0

Which of these subspaces of R3 describes Im T, the set of all vectors that are the
result of using T to transform R? vectors?

o
o

a) 0| laeR c) 0
El 0
[a] X
b) bl la,beR d) R¥={ |y| |x,y,zeR

0 z
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Clontz &
- Activity A.31 (~5 min) Let T : R3 — R? be given by
X
X ) . {1 0 0
T = with standard matrix
Module A }Z/ [y] |:0 1 0:|

Which of these subspaces of R? describes Im T, the set of all vectors that are the
result of using T to transform R3 vectors?

o {[7]]ox)
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Clontz &

=TS Activity A.32 (~5 min) Let T : R* — R3 be the linear transformation given by
the standard matrix
3 4 7 1
Module A A = _1 1 0 2 = [T(el) T(e2) T(e3) T(e4):| .
2 1 3 -1

Since T(v) = T(x1e1 + xoe2 + x3€3 + xq4€4), the set of vectors

a) spans Im T
b) is a linearly independent subset of Im T

c) is a basis for Im T



Linear Algebra

Observation A.33

Clontz &

Lot Let T : R* — R3 be the linear transformation given by the standard matrix
3 47 1
A=([-1 1 0 2
Module A 2 ]. 3 _].
Since the set ] ! } spans Im T, we can obtain a basis for
1 01
Im T by finding RREFA= |0 1 1 and only using the vectors
0 00O
corresponding to pivot columns:
3 4
-1],|1
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Fact A.34
Module A Let T :R” — R™ be a linear transformation with standard matrix A.

e The kernel of T is the solution set of the homogeneous system given by the
augmented matrix [A ‘ 0}. Use the coefficients of its free variables to get a
basis for the kernel.

e The image of T is the span of the columns of A. Remove the vectors creating
non-pivot columns in RREF A to get a basis for the image.



Linear Algebra

Clontz &
Lewis
e A Activity A.35 (~10 min) Let T : R3 — R* be the linear transformation given by
the standard matrix

1 -3 2

2 -6 0

A= 0 0 1

-1 3 1

Find a basis for the kernel and a basis for the image of T.



Linear Algebra

Gt Definition A.36
Let T :V — W be a linear transformation. T is called injective or one-to-one if

T does not map two distinct vectors to the same place. More precisely, T is
injective if T(v) # T(w) whenever v # w.

injective

Module A

S
P

not injective



Linear Algebra

Clontz &
Lewis Activity A.37 (~3 min) Let T : R® — R? be given by
X
X . .10 0
T |y = [y} with standard matrix [0 1 0}
Module A z

Is T injective?
a) Yes, because T
b) Yes, because T

)= T(W) whenever v = w.

)

—

T(w) whenever v ;é w.

(v
(v

+
[0]

c) No, because T | |O| | # T
1]
[0]
d) No, because T | [0
1]
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Module A

Activity A.38 (~2 min) Let T : R?2 — R3 be given by

X
T <[X}) = |y with standard matrix
Y 0
Is T injective?

a) Yes, because T(v
b) Yes, because T (v

= T(w)
# T(w) whenever v # w.
T

v ()1 ()
() (E)

2

whenever v = w.

d) No, because T

O O

o = O
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Lewis
Module |
e Definition A.39
Module V Let T:V — W be a linear transformation. T is called surjective or onto if every
Module A element of W is mapped to by an element of V. More precisely, for every w € W,
Module M there is some v € V with T(v) = w.
Module G

. : g | A. i | ‘A

surjective not surjective



Linear Algebra

Clontz & Activity A.40 (~3 min) Let T : R? — R3 be given by

Lewis

X 10
T <[X}> = |y with standard matrix [0 1
Y 0 00
Module A
Is T surjective?
X
a) Yes, because for every w = |y | € R3, there exists v = [;] € R? such that
z

—

T(v) =w.

<

b) No, because T <[X]> can never equal

y

1
1
1
. 0
c) No, because T <[ ]) can never equal |0].
0



Linear Algebra

Activity A.41 (~2 min) Let T : R® — R2 be given by

Clontz &

Lewis

X
T| |y = [X] with standard matrix [é (1) 8}

Module A ) )
Is T surjective?

[ x
a) Yes, because for every w = [X] € R2, there exists v = y| € R3 such that
Y 42
T(v) = w.
. 0
b) Yes, because for every w = [y] € R?, there exists v= | 0| € R3 such that
z
T(v) =w.

X
c) No, because T | |y can never equal [_32]
z
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Clontz &

Lewis

Observation A.42

As we will see, it's no coincidence that the RREF of the injective map’s standard
Module A matrix
10
0 1
00

has all pivot columns. Similarly, the RREF of the surjective map's standard matrix
1 00
010

has a pivot in each row.



Linear Algebra

Clontz &

Lewis

Observation A.43
Let T:V — W. We have previously defined the following terms.

Module A

e The kernel of T is the set of all vectors in V that are mapped toz € W. It is
a subspace of V.

e The image of T is the set of all vectors in W that are mapped to by
something in V. It is a subspace of W.

e T is called injective or one-to-one if T always maps distinct vectors to
different places.

e T is called surjective or onto if every element of W is mapped to by some
element of V.
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Clontz &

Lewis

Activity A.44 (~5 min) Let T : V — W be a linear transformation where ker T
contains multiple vectors. What can you conclude?

Module A

(a) T is injective
(b)
(c) T is surjective
(d)

T is not injective

T is not surjective



Linear Algebra

Clontz &

Lewis

Fact A.45 N
Module A A linear transformation T is injective if and only if ker T = {0}. Put another way,
an injective linear transformation may be recognized by its trivial kernel.

- - .

v T T(
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Clontz &

Lewis

Activity A.46 (~5 min) Let T : V — R be a linear transformation where Im T is
spanned by four vectors. What can you conclude?

Module A

(a) T is injective
(b) T is not injective
(c) T is surjective
(d)

d) T is not surjective
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Clontz &

Lewis
Module |
el Fact A.47
VI A linear transformation T : V — W is surjective if and only if Im T = W. Put
Module A another way, a surjective linear transformation may be recognized by its identical
Module M codomain and image.
Module G

//’—_‘\ /,’—_‘\A
B : ; . i ‘

surjective, Im T = R? not surjective, Im T # R3



Linear Algebra

Clontz &
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Module A

Activity A.48 (~15 min) Let T : R” — R™ be a linear map with standard matrix
A. Sort the following claims into two groups of equivalent statements: one group
that means T is injective, and one group that means T is surjective.

(2) The kernel of T is trivial, i.e. (f) The image of T equals its
ker T = {0}. codomain, i.e. Im T = R"™.

(b) The columns of A span R™. (g) The system of linear equations given

(c) The columns of A are linearly by the augmented matrix [A ‘ B}
independent. has a solution for all b € R™.

(d) Every column of RREF(A) has a (h) The system of linear equations
pivot. given by the augmented matrix

(e) Every row of RREF(A) has a pivot. [A ‘ 6} has exactly one solution.



Linear Algebra

Clontz &
Lewis

Module A Observation A.49
The easiest way to show that the linear map with standard matrix A is injective is
to show that RREF(A) has a pivot in each column.

The easiest way to show that the linear map with standard matrix A is surjective is
to show that RREF(A) has a pivot in each row.



Linear Algebra

Clontz &
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Activity A.50 (~3 min) What can you conclude about the linear map
Module A a b
T : R? — R3 with standard matrix |c d|?
e f
a) lts standard matrix has more columns than rows, so T is not injective.

C

b) Its standard matrix has more columns than rows, so T is injective.
) Its standard matrix has more rows than columns, so T is not surjective.

d) Its standard matrix has more rows than columns, so T is surjective.
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Activity A.51 (~2 min) What can you conclude about the linear map

T . R® s R? with standard matrix |2 2 €|?
d e f

Its standard matrix has more columns than rows, so T is not injective.

Module A

a
b
c
d

Its standard matrix has more columns than rows, so T is injective.

Its standard matrix has more rows than columns, so T is not surjective.

)
)
)
)

Its standard matrix has more rows than columns, so T is surjective.
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Clontz_&

tevs Fact A.52

The following are true for any linear map 7 : V — W:

e If dim(V) > dim(W), then T is not injective.

e If dim(V) < dim(W), then T is not surjective.
Basically, a linear transformation cannot reduce dimension without collapsing
vectors into each other, and a linear transformation cannot increase dimension from
its domain to its image.

Module A

I T(v) = T(w) o
WA/’ N
v
not injective, 3 > 2 not surjective, 2 < 3

But dimension arguments cannot be used to prove a map is injective or surjective.
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Activity A.53 (~

Clontz &
Lewis
Module A a1l
ani
A=
as1
d41

bijective).

ai2
azo
as2
aso

5 mi

ain
a2n
a3n
dan

n) Suppose T : R" — R* with standard matrix

is both injective and surjective (we call such maps
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Module A

Activity A.53 (~

ail
a
A= |2
a3
a1
bijective).

ai2
azo
as2
aso

5 min) Suppose T : R” — R* with standard matrix

ain
a2n
a3n
dan

is both injective and surjective (we call such maps

Part 1: How many pivot rows must A have?
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Module A

Activity A.53 (~

ail
a
A= |2
a3
a1
bijective).

ai2
azo
as2
aso

5 min) Suppose T : R” — R* with standard matrix

ain
a2n
a3n
dan

is both injective and surjective (we call such maps

Part 1: How many pivot rows must A have?
Part 2: How many pivot columns must A have?
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Module A

Activity A.53 (~

ail
a
A= |2
a3
a1
bijective).

ai2
azo
as2
aso

5 mi

n) Suppose T : R" — R* with standard matrix

ain

a . S -

32" is both injective and surjective (we call such maps
3n

d4n

Part 1: How many pivot rows must A have?
Part 2: How many pivot columns must A have?
Part 3: What is A?



Linear Algebra

Clontz &
Lewis

Activity A.54 (~5 min) Let T : R" — R" be a bijective linear map with standard
matrix A. Label each of the following as true or false.

(a) RREF(A) is the identity matrix.
(b) The columns of A form a basis for R”

Module A

(c) The system of linear equations given by the augmented matrix [A ‘ B] has

exactly one solution for each b € R".
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Clontz &
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Module A
Observation A.55

The easiest way to show that the linear map with standard matrix A is bijective is
to show that RREF(A) is the identity matrix.
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Clontz &
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Activity A.56 (~3 min) Let T : R® — R3 be given by the standard matrix
2 1 -1
Module A
A=14 1 1
6 2 1

Which of the following must be true?
(a) T is neither injective nor surjective
(b) T is injective but not surjective
(c) T is surjective but not injective
(d)

d) T is bijective.



Linear Algebra

Clontz &
Lewis
Activity A.57 (~3 min) Let T : R® — R3 be given by
X 2X+y—z
Module A
T y = |4x+y+z
z 6x + 2y

Which of the following must be true?
(a) T is neither injective nor surjective
(b) T is injective but not surjective
(c) T is surjective but not injective
(d)

d) T is bijective.



Linear Algebra

Clontz &

Lewis

Activity A.58 (~3 min) Let T : R? — R3 be given by

2x + 3y
Module A X
")
Y x + 3y
Which of the following must be true?

(a) T is neither injective nor surjective
b

(b) T is injective but not surjective
(c) T is surjective but not injective
(d)

d) T is bijective.
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Module A

Activity A.59 (~3 min) Let T : R® — R2 be given by

T x _|2x+y -z
YV T lax+y+2z|

Which of the following must be true?
(a) T is neither injective nor surjective
(b) T is injective but not surjective
(c) T is surjective but not injective
(d)

d) T is bijective.
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Lewis

Module M

What algebraic structure do matrices have?
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Clontz &

Lewis

ol 1 At the end of this module, students will be able to...
M1. Matrix Multiplication. ... multiply matrices.
M2. Invertible Matrices. ... determine if a square matrix is invertible or not.

M3. Matrix inverses. ... compute the inverse matrix of an invertible matrix.



Linear Algebra

Clontz &
Lewis
Readiness Assurance Outcomes
Before beginning this module, each student should be able to...
Module M e Compose functions of real numbers.

e |dentify the domain and codomain of linear transformations.

e Find the matrix corresponding to a linear transformation and compute the
image of a vector given a standard matrix A2

e Determine if a linear transformation is injective and/or surjective A4

e Interpret the ideas of injectivity and surjectivity in multiple ways.



Linear Algebra

Clontz &

Lewis

The following resources will help you prepare for this module.
Module M e Function composition (Khan Academy): http://bit.ly/2wkz7£3
e Domain and codomain: https://www.youtube.com/watch?v=BQMyeQOLvpg
e Interpreting injectivity and surjectivity in many ways:
https://www.youtube.com/watch?v=WpUv72Y6D10


http://bit.ly/2wkz7f3
https://www.youtube.com/watch?v=BQMyeQOLvpg
https://www.youtube.com/watch?v=WpUv72Y6Dl0

Linear Algebra

Clontz &
Lewis
Activity M.1 (~5 min) Let T : R® — R? be given by the 2 x 3 standard matrix
B = g _13 _43 and S : R? — R* be given by the 4 x 2 standard matrix
(12
Module M O 1
A= 3 5
-1 -2
What is the domain of the composition map So T7
(a) R
b) R2
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Activity M.2 (~3 min) Let T : R® — R? be given by the 2 x 3 standard matrix
B = g _13 _43 and S : R? — R* be given by the 4 x 2 standard matrix
(12
Module M O 1
A= 3 5
-1 -2
What is the codomain of the composition map So T7
(a) R
b) R2



Linear Algebra

Clontz &
Lewis

Module M

Activity M.3 (~2 min) Let T : R® — R? be given by the 2 x 3 standard matrix

B =

A—

; _13 _43 and S : R2 — R* be given by the 4 x 2 standard matrix
(12

0 1

3 5
-1 -2

What size will the standard matrix of So T : R® — R* be? (Rows x Columns)

(a) 4x3 (c) 3x4 (e) 2x4
(b) 4 x2 (d) 3x2 (f) 2x3



Linear Algebra

s’ Activity M.4 (~15 min) Let T : R3 — R2 be given by the 2 x 3 standard matrix
B = 5.2) j3 _43 and S : R?2 = R? be given by the 4 x 2 standard matrix
(12
0 1
Module M A= 3 5
-1 -2




Linear Algebra

Clontz &

llwis Activity M.4 (~15 min) Let T : R — R? be given by the 2 x 3 standard matrix
B = 5.2) j3 _43 and S : R?2 = R? be given by the 4 x 2 standard matrix
(12
0 1
Module M A= 3 5
-1 -2

Part 1: Compute

—
n
o
\'
~—
—~
[¢]
[y
~
|
n
—~
\'
—
ol
[y
~
~
Il
n
7N\
[ —
(G20 \ O]
[ |
S~—
Il
~N N N N



Linear Algebra

Clontz &

llwis Activity M.4 (~15 min) Let T : R — R? be given by the 2 x 3 standard matrix
B = 5.2) j3 _43 and S : R?2 = R? be given by the 4 x 2 standard matrix
(12
0 1
Module M A= 3 5
-1 -2

Part 1: Compute

—
n
o
\'
~—
—~
[¢]
[y
~
|
n
—~
\'
—
ol
[y
~
~
Il
n
7N\
[ —
(G20 \ O]
[ |
S~—
Il
~N N N N

Part 2: Compute (S o T)(ep).
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Clontz &

llwis Activity M.4 (~15 min) Let T : R — R? be given by the 2 x 3 standard matrix
B = 5.2) j3 _43 and S : R?2 = R? be given by the 4 x 2 standard matrix
(12
0 1
Module M A= 3 5
-1 -2

Part 1: Compute

—
n
o
\'
~—
—~
[¢]
[y
~
|
n
—~
\'
—
ol
[y
~
~
Il
n
7N\
[ —
(G20 \ O]
[ |
S~—
Il
~N N N N

Part 2: Compute (So T)(e
Part 3: Compute (So T)(e

o, O
w N
—
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Clontz &

llwis Activity M.4 (~15 min) Let T : R — R? be given by the 2 x 3 standard matrix
B = 5.2) j3 _43 and S : R?2 = R? be given by the 4 x 2 standard matrix
(12
0 1
Module M A= 3 5
-1 -2

Part 1: Compute

—
n
o
\'
~—
—~
[¢]
[y
~
|
n
—~
\'
—
ol
[y
~
~
Il
n
7N\
[ —
(G20 \ O]
[ |
S~—
Il
~N N N N

Part 2: Compute (S o T)(ep).
Part 3: Compute (S o T)(e3).
Part 4: Write the 4 x 3 standard matrix of So T : R® — R*.
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Module M

Definition M.5

We define the product AB of a m x n matrix A and a n X k matrix B to be the
m X k standard matrix of the composition map of the two corresponding linear
functions.

For the previous activity, S had a 4 x @ matrix and T had a @ X 3 matrix, so
So T had a 4 x 3 standard matrix:

1 2
0 1|2 1 -3
AB‘35[5—34}
-1 -2
12 -5 5
5 -3 4

=[(SoT)(e) (SoT)ea) (SeT)es)l=| 45 {» 19

-12 5 =5
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Activity M.6 (~15 min) Let S : R3 — R? be given by the matrix
Module M 4 _2 3 2 3
A= [ } and T : R? — R3 be given by the matrix B = |1 —1].

0 1 1 0 1
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Clontz &

Lewis

Activity M.6 (~15 min) Let S : R3 — R? be given by the matrix

Module M 4 _2 3 2 3
A= and T : R? — R3 be given by the matrix B = |1 —1].
0 1 1 0 _1

Part 1: Write the dimensions (rows x columns) for A, B, AB, and BA.



Linear Algebra

Clontz &
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Activity M.6 (~15 min) Let S : R3 — R? be given by the matrix

Module M 4 _2 3 2 3
A= and T : R? — R3 be given by the matrix B = |1 —1].
0 1 1 0 _1

Part 1: Write the dimensions (rows x columns) for A, B, AB, and BA.
Part 2: Find the standard matrix AB of So T.
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Module M

Activity M.6 (~15 min) Let S : R3 — R? be given by the matrix

-4 -2 3 23
A= and T : R? — R3 be given by the matrix B = |1 —1].
0 1 1 0 -1

Part 1: Write the dimensions (rows x columns) for A, B, AB, and BA.
Part 2: Find the standard matrix AB of So T.
Part 3: FInd the standard matrix BAof T o S.



Linear Algebra

Clontz &

Lewis

Module M

Activity M.7 (~10 min) Consider the following three matrices.

2 21 0 1
10 -3 1 11 -10
A_[321} 5=10 03 2 1 €=

157 2 1

B~ wonN
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Module M

Activity M.7 (~10 min) Consider the following three matrices.

2 21 0 1 2 2
10 -3 1 11 -10 0 -1
A_[32 1} 5=10 03 2 1 €=13 1
157 2 1 4 0

Part 1: Label each of these matrices with its number of rows x columns.



Linear Algebra

Clontz &
Lewis
Activity M.7 (~10 min) Consider the following three matrices.
2 21 0 1 2 2
e 10 -3 1 11 -1 0 0 -1
A:[321} 5=10 03 2 1 €=13 1
-1 57 2 1 4 0

Part 1: Label each of these matrices with its number of rows x columns.
Part 2: Only one of the matrix products AB, AC, BA, BC, CA, CB can actually be
computed. Compute it.
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Module M

Remark M.8

Recall that the product AB of a m x n matrix A and an n X k matrix B is the
m X k standard matrix of the composition map of the two corresponding linear
functions.

For example, if S has a 4 x @ matrix A and T has a @ X 3 matrix B, then So T
has a 4 x 3 standard matrix:

1 2
0 1|2 1 -3
AB_35[5—34}
-1 -2
12 -5 5
5 -3 4

=[(SoT)(e) (SoT)ea) (SeT)(es)l=| 45 {» 19

-12 5 =5
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Module M

Activity M.9 (~15 min) Let B =

3
2
0

—4
0
-3

0
—1|,and let A=
3

= O N

= w ~
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Module M

3 -4
Activity M.9 (~15 min) Let B= [2 0
0 -3

Part 1: Compute the product BA by hand.

0
—1], and let A=
3

= O N

= w ~
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3 -4 0
Activity M.9 (~15min) Let B= |2 0 —1|,andlet A=
Module M 0 -3 3

Part 1: Compute the product BA by hand.
Part 2: Check your work using technology. Using Octave:

e B=sym([3-40;20-1;0-33])
e A=sym([27-1;032;11-1])
e BxA

= O N

= w ~

-1
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2
Activity M.10 (~5 min) Let A= |0
Module M 1
BA = A, that is,
2 0?7 7
? ? ?
? ? ?

Check your guess using technology.
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Definition M.11
The identity matrix /, (or just / when n is obvious from context) is the n x n matrix
Module M
1 0 0
= 0 1
0
0 0 1

It has a 1 on each diagonal element and a 0 in every other position.
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Fact M.12

Module M

1 0 0] |2
0 1 0] ]0
0 0 1|1

For any square matrix A, IA = Al = A:



Linear Algebra

Activity M.13 (~20 min) Tweaking the identity matrix slightly allows us to write

Clontz & row operations in terms of matrix multiplication.

Lewis

Module M



Linear Algebra

Activity M.13 (~20 min) Tweaking the identity matrix slightly allows us to write
row operations in terms of matrix multiplication.
Part 1: Create a matrix that doubles the third row of A:

Clontz &

Lewis

! 2 7 -1 2 7 -1
/7 7110 3 21 =10 3 2
o7 7111 -1 2 2 =2

Module M



Linear Algebra

Activity M.13 (~20 min) Tweaking the identity matrix slightly allows us to write
Clontz & row operations in terms of matrix multiplication.
Part 1: Create a matrix that doubles the third row of A:

! 2 7 -1 2 7 -1
/7 7110 3 21 =10 3 2
o7 7111 -1 2 2 =2

Module M

Part 2: Create a matrix that swaps the second and third rows of A:



Linear Algebra

Activity M.13 (~20 min) Tweaking the identity matrix slightly allows us to write
Clontz & row operations in terms of matrix multiplication.
Part 1: Create a matrix that doubles the third row of A:

! 2 7 -1 2 7 -1
/7 7110 3 21 =10 3 2
o7 7111 -1 2 2 =2

Module M

Part 2: Create a matrix that swaps the second and third rows of A:
2 7 -1 2 7
03 2(=1J11 -1
11 -1 0 3

N )

Part 3: Create a matrix that adds 5 times the third row of A to the first row:

707 7127 -1 245(1) 7+5(1) —1+5(-1)
77 720103 2|=] o 3 2
707 711 -1 1 1 ~1



Linear Algebra

Shi Fact M.14
If R is the result of applying a row operation to /, then RA is the result of applying
the same row operation to A.

c 00
e Scalingarow: R= (0 1 0]
Module M O O 1
010
e Swapping rows: R = {1 00
0 01
1 0 ¢
e Adding a row multiple to another row: R= [0 1 0
0 01
Such matrices can be chained together to emulate multiple row operations. In

particular,
RREF(A) = Ri ... RoR1A

for some sequence of matrices Ry, Ry, . .., Rk.
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Clontz & Activity M.15 (~10 min) Consider the two row operations R, <+ R3 and
R1 + R> — Ry applied as follows to show A ~ B:

-1 4 5 -1 4 5
A=]10 3 1|~ 1 2 3
1 2 3 0 3 -1
Module M _
—-14+1 442 543 0 6 38
0 3 -1 03 -1

Express these row operations as matrix multiplication by expressing B as the
product of two matrices and A:

B=1\|7 7 7(|7? 7 7]A
N S 2N I i B B

Check your work using technology.
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Module M

Activity M.16 (~15 min) Let T : R” — R™ be a linear map with standard matrix
A. Sort the following items into three groups of statements: a group that means T

is injective, a group that means T is surjective, and a group that means T is
bijective.

(a) Ax = E has a solution for all b € R™ (f) The columns of A are a basis of R”
(b) Ax = b has a unique solution for all

b c R (g) Every column of RREF(A) has a
(c) Ax = 0 has a unique solution. pivot

(d) The columns of A span R™ (h) Every row of RREF(A) has a pivot
(e) The columns of A are linearly

independent (i) m=nand RREF(A) =1
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Definition M.17
Let T : R” — R” be a linear map with standard matrix A.
Mol 04 e If T is a bijection and b is any R" vector, then T(x) = Ax = b has a unique

solution.

e So we may define an inverse map T~!:R"” — R" by setting T_l(B) to be
this unique solution.

e Let A~! be the standard matrix for T~1. We call A~! the inverse matrix of
A, so we also say that A is invertible.



Linear Algebra

Clontz &

Lewis

Activity M.18 (~20 min) Let T : R® — R3 be the linear transformation given by
2 -1 -6
the standard matrix A= |2 1 3
Module M 1 1 4



Linear Algebra

Clontz &
Lewis
Activity M.18 (~20 min) Let T : R® — R3 be the linear transformation given by
2 -1 -6
the standard matrix A= |2 1 3
Module M 1 1 4
Part 1: Write an augmented matrix representing the system of equations given by
1

T(x) = ey, that is, Ax = |0|. Then solve T(x) = e; to find T1(ey).
0



Linear Algebra

Clontz &
Lewis
Activity M.18 (~20 min) Let T : R® — R3 be the linear transformation given by
2 -1 -6
the standard matrix A= |2 1 3
Module M 1 1 4
Part 1: Write an augmented matrix representing the system of equations given by
1
T(x) = ey, that is, Ax = |0|. Then solve T(x) = e; to find T1(ey).
0

Part 2: Solve T(x) = ez to find T~ 1(ey).



Linear Algebra

Clontz &
Lewis
Activity M.18 (~20 min) Let T : R® — R3 be the linear transformation given by
2 -1 -6
the standard matrix A= |2 1 3
Module M 1 1 4
Part 1: Write an augmented matrix representing the system of equations given by
1
T(x) = ey, that is, Ax = |0|. Then solve T(x) = e; to find T1(ey).
0

Part 2: Solve T(x) = ez to find T~ 1(ey).
Part 3: Solve T(x) = e3 to find T~1(e3).



Linear Algebra

Clontz &
Lewis
Activity M.18 (~20 min) Let T : R® — R3 be the linear transformation given by
2 -1 -6
the standard matrix A= |2 1 3
Module M 1 1 4
Part 1: Write an augmented matrix representing the system of equations given by
1
T(x) = ey, that is, Ax = |0|. Then solve T(x) = e; to find T1(ey).
0

Part 2: Solve T(x) = ez to find T~ 1(ey).
Part 3: Solve T(x) = e3 to find T~1(e3).
Part 4: Write A~1, the standard matrix for 71,



Linear Algebra

Clontz &

Lewis

Observation M.19
We could have solved these three systems simultaneously by row reducing the

Moddle M matrix [A] /] at once.

2 -1 6|1 00 1001 -2 3
2 1 3|01 0f~|010|-5 14 -18
1 1 4|0 01 0011 -3 4



Linear Algebra

Clontz &

Lewis

Module M

Activity M.20 (~5 min) Find the inverse A~! of the matrix A = [1

row-reducing [A| /].

0



Linear Algebra

Clontz &
Lewis
Module M 2 3 1
Activity M.21 (~5 min) Is the matrix |—1 —4 2| invertible? Give a reason for
0 -5 5

your answer.



Linear Algebra

Clontz &

Lewis

Module M

Observation M.22
An n x n matrix A is invertible if and only if RREF(A) = I,.



Linear Algebra

Clontz &

Lewis

Activity M.23 (~10 min) Let T : R2 — R? be the bijective linear map defined by

x|\ _ | 2x—=3y . . (XN [Bx 43y
e T <[y}) = [_3X+ Sy]’ with the inverse map T <[y}> = [3x+ 2|
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Clontz &
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Activity M.23 (~10 min) Let T : R?> — R? be the bijective linear map defined by
x|\ _ | 2x—=3y . i (XN [Bx 43y
e T <[y}) = [_3)( n Sy]’ with the inverse map T <[y}> = [3)( Loyl
Part 1: Compute (T~ 1o T) < _12
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Clontz &

Lewis

Activity M.23 (~10 min) Let T : R2 — R? be the bijective linear map defined by

x|\ _ | 2x—=3y . . (XN [Bx 43y
e T <[y}) = [_3)( n Sy]’ with the inverse map T <[y}> = [3)( 4 Qy]

Part 1: Compute (T~ 1o T) <[_12] >

Part 2: If A is the standard matrix for T and A~1 is the standard matrix for T2,
find the 2 x 2 matrix
1 7?7
AT A = .

77



Linear Algebra

Clontz &
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Module Observation M.24
T=Yo T = To T !is the identity map for any bijective linear transformation T.

Therefore A=A = AA~1 = | is the identity matrix for any invertible matrix A.
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Module G

How can we

understand linear maps geometrically?



Linear Algebra

Clontz &

Lewis

Module G

At the end of this module, students will be able to...

G1. Row operations. ... describe how a row operation affects the determinant of
a matrix, including composing two row operations.

G2. Determinants. ... compute the determinant of a 4 x 4 matrix.
G3. Eigenvalues. ... find the eigenvalues of a 2 x 2 matrix.

G4. Eigenvectors. ... find a basis for the eigenspace of a 4 x 4 matrix associated
with a given eigenvalue.



Linear Algebra

o
Readiness Assurance Outcomes
Before beginning this module, each student should be able to...
e Calculate the area of a parallelogram.
Module G e Find the matrix corresponding to a linear transformation of Euclidean spaces

A2.

Recall and use the definition of a linear transformation Al.

Find all roots of quadratic polynomials (including complex ones).

Interpret the statement “A is an invertible matrix” in many equivalent ways in
different contexts.



Linear Algebra

Clontz &

Lewis

The following resources will help you prepare for this module.
e Finding the area of a parallelogram (Khan Academy):
http://bit.ly/2B05iWx
Moddle & e Factoring quadratics (Khan Academy): http://bit.ly/1XjfbV2
e Factoring quadratics using area models (Youtube):
https://youtu.be/Aa-v1EK7DR4

e Finding complex roots of quadratics (Youtube):
https://www.youtube.com/watch?v=2yBhDsNEOwg


http://bit.ly/2BO5iWx
http://bit.ly/1XjfbV2
https://youtu.be/Aa-v1EK7DR4
https://www.youtube.com/watch?v=2yBhDsNE0wg

Linear Algebra

Clontz & Activity G.1 (~5 min) The image below illustrates how the linear transformation
T : R? — RR? given by the standard matrix A = [g g} transforms the unit square.
Module G AEZ = |:(3):| - 3
N 2
Ae; =
= o

(a) What are the lengths of Ae; and Ae,?
(b) What is the area of the transformed unit square?



e e Activity G.2 (~5 min) The image below illustrates how the linear transformation

Clontz &
- . . 2 3 .
Lewis S : R? — R? given by the standard matrix B = [0 4]. transforms the unit square.
Module G

(a) What are the lengths of Be; and Be;?
(b) What is the area of the transformed unit square?



Linear Algebra

Clontz &
Lewis
Observation G.3
It is possible to find two nonparallel vectors that are scaled but not rotated by the
linear map given by B.
3 3
2 (1] =+[1
Module G N 2 311 2 2 L g
o= o o) - [o)-=
11 n
2o -2l
3 3 3
IRl R re

The process for finding such vectors will be covered later in this module.



tineerAlgsba Qbservation G.4
Clontz & Notice that while a linear map can transform vectors in various ways, linear maps
always transform parallelograms into parallelograms, and these areas are always

2 3} , this factor is 8.

transformed by the same factor: in the case of B = [0 4

Module G

Since this change in area is always the same for a given linear map, it will be equal
to the value of the transformed unit square (which begins with area 1).



Linear Algebra

Clontz &

Lewis Remark G.5
We will define the determinant of a square matrix A, or det(A) for short, to be
the factor by which A scales areas. In order to figure out how to compute it, we
first figure out the properties it must satisfy.
Module G




Lincar Algebra Activity G.6 (~2 min) The transformation of the unit square by the standard

Clontz & N ]_ N
s matrix [e; ep] = 0 2] = | is illustrated below. What is det([e1 ep]) = det(/),
the area of the transformed unit square shown here?
Module G

ol

-

I
1
O =~y
—_

[«9)

(@]

o oy
~— — ~— ~—
BN = O



Linear Algebra

Conts & Activity G.7 (~2 min) The transformation of the unit square by the standard
Lewis matrix [v v] is illustrated below: both T(e;) = T(e2) = v. What is det([v v]), the
area of the transformed unit square shown here?

Module G

</

a) 0
b) 1
c) 2
d) 4



tinear Alsora Activity G.8 (~5 min) The transformations of the unit square by the standardé
Clontz & matrices [v w] and [cv w] are illustrated below. Describe the value of det([cv w]).

Lewis

Module G

2l

<l

) det([v w))
b) det([v w])+ ¢

c) cdet([v w])
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Module G

Activity G.9 (~5 min) The transformations of unit squares by the standard
matrices [u w], [v w] and [u+ v w] are illustrated below. Describe the value of
det([u+v w]).

7
</
cl
+
<l

2) det([ii w]) = det([v w])
b) det([u w]) + det([v w])
c) det([u w])det([v w])



Linear Algebra

o
Definition G.10
The determinant is the unique function det : M, , — R satisfying these
properties:
P1l: det(/) =1
Module 6 P2: det(A) = 0 whenever two columns of the matrix are identical.

P3: det[--- cv ---] = cdet[--- v ---], assuming no other columns change.

P4: det[--- v+w ---]=det[--- v ---] +det[--- w ---], assuming no other
columns change.

Note that these last two properties together can be phrased as “The determinant is
linear in each column.”



Linear Algebra Observation G.].].
Clontz & The determinant must also satisfy other properties. Consider det([v. w + cv]) and

s det(v w]).

Module G

The base of both parallelograms is v, while the height has not changed, so the
determinant does not change either. This can also be proven using the other
properties of the determinant:

det([v+cw w]) =det([v w])+det([cw w])
=det([v w])+ cdet([w w])
det(v. w])+c-0

det( )

et([v
et(v w
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Clontz &

Lewis

Module G

Remark G.12
Swapping columns may be thought of as a reflection, which is represented by a

negative determinant. For example, the following matrices transform the unit
square into the same parallelogram, but the second matrix reflects its orientation.

2 3 3 2
A—[O 4] detA =28 B—[4 O} detB = -8




Linear Algebra

Clontz &

Lewis

Observation G.13
The fact that swapping columns multiplies determinants by a negative may be
verified by adding and subtracting columns.

oule det([v. w]) =det([v+w w])
=det(v+w w—(v+w)])
=det(v+w —V])
=det(v+w—-v —V])
= det(jw —V])

= —det([w v])



Linear Algebra
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Lewis

Module G

Fact G.14
To summarize, we've shown that the column versions of the three row-reducing

operations a matrix may be used to simplify a determinant in the following way:
(a) Multiplying a column by a scalar multiplies the determinant by that scalar:

(b) Swapping two columns changes the sign of the determinant:
det([-- v -+ w --])=—det([-- w -~ v -]

(c) Adding a multiple of a column to another column does not change the
determinant:

g

det([- - - v - w -]) = det([- - - Vview ---



Linear Algebra

. Activity G.15 (~5 min) The transformation given by the standard matrix A scales
ontz

Lewis areas by 4, and the transformation given by the standard matrix B scales areas by
3. By what factor does the transformation given by the standard matrix AB scale
areas?

= i’ - ‘
(a) 1
(b) 7
(c) 12
(d) Cannot be determined



Linear Algebra

Clontz &

Lewis

Fact G.16
Since the transformation given by the standard matrix AB is obtained by applying
the transformations given by A and B, it follows that

Module G

det(AB) = det(A) det(B) = det(B) det(A) = det(BA)



Linear Algebra

Clontz &
Lewis
Remark G.17
Recall that row operations may be produced by matrix multiplication.
c 00
e Multiply the first row of Aby c: |0 1 A
Module G 0 0 1
010
e Swap the first and second row of A: {1 0 O A
0 01

e Add c times the third row to the first row of A:

o O

o = O

= O 0
>



Linear Algebra

lentz_&
Fact G.18
The determinants of row operation matrices may be computed by manipulating
columns to reduce each matrix to the identity:
c 00 1 00
e Scalingarow: det [0 1 0| =cdet|0 1 0| =c
Module G 0 0 1 0 0 1
010 1 00
e Swapping rows: det [1 0 0| =—1det|0 1 0| =-1
0 01 0 01

e Adding a row multiple to another row:
1 0 ¢ 1 0 c—-1c
det [0 1 Of =det|0 1 0—0c| =det(/)=1
0 01 0 0 1-0c



Linear Algebra

Clontz &
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Module G

Activity G.19 (~5 min) Consider the row operation R; + 4R3 — Ry applied as
follows to show A ~ B:

1 2 3] [1+4(7) 2+4(8) 3+4(9)
A=14 5 6|~ 4 5 6 =B
7809 7 8 9

(a) Find a matrix R such that B = RA, by applying the same row operation to
1 00
=10 1 0].
0 01
(b) Find det R by comparing with the previous slide.

(c) If C € M33 is a matrix with det(C) = —3, find

det(RC) = det(R) det(C).



Linear Algebra

Clontz &

Lewis

Module G

Activity G.20 (~5 min) Consider the row operation R; <> R3 applied as follows to
show A ~ B:

1 2 3 7 89
A=14 5 6|~ |4 5 6| =8B
7 8 9 1 2 3

(a) Find a matrix R such that B = RA, by applying the same row operation to /.
(b) If C € M33 is a matrix with det(C) = 5, find det(RC).



Linear Algebra

Clontz &
Lewis
Activity G.21 (~5 min) Consider the row operation 3R, — R» applied as follows
to show A ~ B:
1 2 3 1 2 3
Module & A= 14 5 6| ~ |3(4) 3(5) 3(6)| =B
7 8 9 7 8 9

(a) Find a matrix R such that B = RA.
(b) If C € M3 3 is a matrix with det(C) = —7, find det(RC).



Linear Algebra

Clontz &
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Remark G.22
Recall that the column versions of the three row-reducing operations a matrix may
be used to simplify a determinant:
(a) Multiplying columns by scalars:
Module G det([--- cv ---])=cdet([-- v --])

(b) Swapping two columns:
det([-- v -+ w --])=—det([-- W -+ v -]

(c) Adding a multiple of a column to another column:

—

det([- - - v - w ~-]) = det([ - - vVview ---

g
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Remark G.23
The determinants of row operation matrices may be computed by manipulating
columns to reduce each matrix to the identity:

1 00
e Scaling a row: 0
Module G 1

c
0

O O =
= O O

0

0
0
e Swapping rows: |1
0

e Adding a row multiple to another row:

o O
o = O
= 0 O
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Module G

Fact G.24
Thus we can also use row operations to simplify determinants:

@ Multiplying rows by scalars: det |cR| = cdet |R

® Swapping two rows: det

© Adding multiples of rows to other rows: det

R

= —det

S

= det

R+ cS




Linear Algebra

Clontz &

Lewis Observation G.25
. 2 4 : _
So we may compute the determinant of [2 3] by manipulating its rows/columns
to reduce the matrix to /:
2 4 1 2
Moo @ det [2 3} = 2det [2 3]
1 2
20al! 2]
1 -2
= —2det [O 1 }
10
= —2det [O 1]



Linear Algebra

Clontz &

Lewis

Remark G.26
So we see that row reducing all the way into RREF gives us a method of

Module G computing determinants!

However, we learned in module E that this can be tedious for large matrices. Thus,
we will try to figure out how to turn the determinant of a larger matrix into the
determinant of a smaller matrix.



Linear Algebra

Activity G.27 (~5 min) The following image illustrates the transformation of the

o 310
unit cube by the matrix |1 1 1].
0 01

Module G

Recall that for this solid V = Bh, where h is the height of the solid and B is the
area of its parallelogram base. So what must its volume be?

(a) det E ﬂ (b) det E (1)} (c) det B ﬂ (d) det [(1) ﬂ



Linear Algebra

Clontz &

Lewis

Module G

Fact G.28

If row i contains all zeros except for a 1 on the main (upper-left to lower-right)
diagonal, then both column and row i may be removed without changing the value
of the determinant.

3 2 -1 3 3 _1 3
0O 1 0 O

det =det|—-1 1 O
14 10 5 11 1
5 0 11 1

Since row and column operations affect the determinants in the same way, the
same technique works for a column of all zeros except for a 1 on the main diagonal.

S T

det =det|-1 1 11
-1 0 1 11 3 0 1
3 0 0 1



Linear Algebra

Clontz &

Lewis

Activity G.29 (~5 min) Remove an appropriate row and column of

Module G 1 0 O
det |1 5 12| to simplify the determinant to a 2 x 2 determinant.

3 2 -1



Linear Algebra

Clontz &
Lewis
0 3 -2
Activity G.30 (~5 min) Simplify det |2 5 12| to a multiple of a 2 x 2
Module G 0 2 _1

determinant by first doing the following:
e Factor out a 2 from a column.

e Swap rows or columns to put a 1 on the main diagonal.



Linear Algebra

Clontz &

Lewis

4 -2 2
Activity G.31 (~5 min) Simplify det |3 1 4| to a multiple of a 2 x 2
1 -1 3

Module G

determinant by first doing the following:
¢ Use row/column operations to create two zeroes in the same row or column.

e Factor/swap as needed to get a row/column of all zeroes except a 1 on the
main diagonal.
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Module G

Observation G.32

Using row/column operations, you can introduce zeros and reduce dimension to
whittle down the determinant of a large matrix to a determinant of a smaller
matrix.

4 3 01 4 3 0 1 A 3 1
2 -2 40 6 —18 0 —20
det 1 4 1 5 = det 1 a4 1 5 = det g —818 —320
2 8 03 2 8 0 3
1 3 4
—...=—2det [0 21 43 | = —2det [311 —430]
0 -1 -10
= ... = —2det [_%)67 211] = —2det[-167]

= —2(—167) det(/) = 334



Linear Algebra

Clontz &

Lewis

3
Module G Activity G.33 (~10 min) Compute det ; by using any

1
-1 -1
combination of row/column operations.

N O N Ol
N WO o
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Module G

Observation G.34

Another option is to take advantage of the fact that the determinant is linear in
each row or column. This approach is called Laplace expansion or cofactor
expansion.

For example, since [I 2 4] =1[1 0 0]+2[0 1 0]+4[0 0 1],

2 35 2 35 2 35 2 35
det |—1 3 5| =1det|—1 3 5| 4+2det|—1 3 5| +4det|{—-1 3 5
1 2 4 1 00 0 1 0 0 0 1
5 3 2 2 5 3 2 3 5
=—1det |5 3 —1| —2det|—-1 5 3| +4det|—-1 3 5
0 0 1 0 0 1 0 01
5 3 2 5 2 3
= —det [5 3} — 2det [_1 5} + 4 det [_1 3]



Linear Algebra

Clontz &
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Module G

Observation G.35
Applying Laplace expansion to a 2 x 2 matrix yields a short formula you may have
seen:

a b 1 0 01 1 0 1 0
det[c d}—adet[c d]—I—bdetL d}—adet[c d]—bdet[d C]—ad—bc.

There are formulas for the determinants of larger matrices, but they can be pretty
tedious to use. For example, writing out a formula for a 4 x 4 determinant would
require 24 different terms!

411 d12 413 di14
a1 a2 a3 ax
431 4d32 433 4d34
d41 442 A43 da4

det = a11(a22(as3a4s—as3ass)—ax3(azpass—asaza)+... )+. ..

So this is why we either use Laplace expansion or row/column operations directly.



Linear Algebra

Clontz &
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Activity G.36 (~10 min) Use Laplace expansion to compute

o 2 2 1 0
gt |03 2 -1
13 2 0 3

0 -3 2 -2



Linear Algebra

Clontz &

Lewis

Activity G.37 (~5 min) Based on what we've done today, which technique is
easier for computing determinants?

Module G (a) Memorizing formulas.
(b)
(c) Laplace expansion.
(d)

Using row/column operations.

Some other technique (be prepared to describe it).



Linear Algebra

Clontz &
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Activity G.38 (~10 min) Use your preferred technique to compute

o 4 -3 0 0
det | 32 -1
13 2 0 3

0 -3 2 -2
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Activity G.39 (~5 min) An invertible matrix M and its inverse M~ are given
below:

o FR I A

Which of the following is equal to det(M)det(M~1)?
a) -1
b) 0

Module G

O

1
4

o

)
)
)
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Fact G.40

e For every invertible matrix M,

Module G

det(M) det(M™1) = det(/) = 1

so det(M~1) = WIM)'

e Furthermore, a square matrix M is invertible if and only if det(M) # 0.



Linear Algebra Observation G .41

Clontz & Consider the linear transformation A : R?> — R? given by the matrix A = [3 ﬂ .

Module G

—

7
e Ae1

It is easy to see geometrically that

1 2 2] [1] 2 1]
A O] [0 3 N ] =2

It is less obvious (but easily checked once you find it) that
[2 2 2] [2] [ 2]
| s

AlLl = =

0 3] |1} 3
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Definition G.42
Let A€ M, . An eigenvector for A is a vector x € R” such that Ax is parallel to

X.

Module G // 2 2
w /B " 4l ]l

4 _\, —\
e; Ae1 = 231

In other words, Ax = A\x for some scalar \. If x # 0, then we say X is a nontrivial
eigenvector and we call this )\ an eigenvalue of A.



Linear Algebra

Clloniz &2 Activity G.43 (~5 min) Finding the eigenvalues \ that satisfy

Lewis

N

AX = Xx = A(IX) = (A\)x

for some nontrivial eigenvector x is equivalent to finding nonzero solutions for the
matrix equation

—

(A= A% =0.

Module G
Which of the following must be true for any eigenvalue?

(a) The kernel of the transformation with standard matrix A — A/ must contain
the zero vector, so A — M/ is invertible.

(b) The kernel of the transformation with standard matrix A — Al must contain a
non-zero vector, so A — A/ is not invertible.

(c) The image of the transformation with standard matrix A — A\l must contain
the zero vector, so A — Al is invertible.

(d) The image of the transformation with standard matrix A — A/ must contain a
non-zero vector, so A — A/ is not invertible.
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Clontz &
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Fact G.44
The eigenvalues A for a matrix A are the values that make A — Al non-invertible.

Module G
Thus the eigenvalues A for a matrix A are the solutions to the equation

det(A — Al) = 0.
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Definition G.45
The expression det(A — Al) is called characteristic polynomial of A.

1 2
For example, when A = [3 4], we have
Module G 1 2 A0 1-A 2
A-Al= [3 4} B {0 )J _{ 3 4—4

Thus the characteristic polynomial of A is

det [1;A 4:] (1= N —A) = (2)3) =N —5)r—2

and its eigenvalues are the solutions to A> — 5\ — 2 = 0.
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Activity G.46 (~10 min) Compute det(A — A/) using co-factor expansion or

Module G 6 _2 1
another technique to find the characteristic polynomial of A= [ 0 -5 0.
-4 2 1



Activity G.47 (~10 min) Let A = [ >

2
-3 2|

«O>r «Fr «=>»

«E=E

DA



Linear Algebra

Clontz &

Lewis

-3 -2
Part 1: Compute det(A — A/) to determine the characteristic polynomial of A.

Activity G.47 (~10 min) Let A = [ 5 2 }

Module G



Linear Algebra
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Activity G.47 (~10 min) Let A= [_53 _22}

Part 1: Compute det(A — A/) to determine the characteristic polynomial of A.

Part 2: Set this characteristic polynomial equal to zero and factor to determine the
eigenvalues of A.

Module G



Linear Algebra

Clontz &

Lewis

Module G Activity G.48 (~10 min) Find all the eigenvalues for the matrix A = B :ﬂ



Linear Algebra
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Activity G.49 (~10 min) It's possible to show that —2 is an eigenvalue for
1 4 -2
2 -7 9
3 0 4
Module G

Compute the kernel of the transformation with standard matrix

7 4 -2
A—(=2)l=|2 7 9
3.0 7

to find all the eigenvectors x such that Ax = —2x.
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Definition G.50
Since the kernel of a linear map is a subspace of R”, and the kernel obtained from

A — Al contains all the eigenvectors associated with A\, we call this kernel the
eigenspace of A associated with \.

Module G



Linear Algebra
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Activity G.51 (~10 min) Find a basis for the eigenspace for the matrix
Module G 5 -2 0 4
odule 6 -2 1 5 _ _ _
2 1 2 _3 associated with the eigenvalue 1.

4 5 -3 6
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Section 1
Section 2
Section 3

Section 4

Definition P.1
In geology, a phase is any physically separable material in the system, such as
various minerals or liquids.

A component is a chemical compound necessary to make up the phases; these are
usually oxides such as Calcium Oxide (CaO) or Silicone Dioxide (SiO2).

In a typical application, a geologist knows how to build each phase from the
components, and is interested in determining reactions among the different phases.



Linear Algebra
Clontz & Observation P.2

bewis Consider the 3 components
El = CaO 62 = MgO and E3 = SiOQ
and the 5 phases:

51 = CagMgSiQOg; 62 = CaMgSiO4 53 = CaSi03
54 = CaMgSigOG 55 = CagMgSiQO7

Section 1

Section 2
Section 3

Geologists already know (or can easily deduce) that

Section 4

61:3614-624-263 52 261+62+E3 63 2614-0624-63
542614-62—1—263 55:261-1-624—263

since, for example:

E1 +E3 = Ca0 + SiO9 = CaSiO3 = 63



Linear Algebra

Clontz &

Lewis

Section 1
Seeiiom 2

Act|V|ty P.3 (~5 min) To study this vector space, each of the three components
C1, €2, €3 may be considered as the three components of a Euclidean vector.

3 1 1 1 2
P1 = 1 y P2 = 1 yP3 = 0 yPga = 1 yPs = 1
2 1 1 2 2

Determine if the set of phases is linearly dependent or linearly independent.



Linear Algebra

Clontz &

Lewis Activity P.4 (~15 min) Geologists are interested in knowing all the possible
chemical reactions among the 5 phases:

3 1 1

p; = CagMgSisOg = [1| p, = CaMgSiOy = 1| p3 = CaSiO3 = |0

2 1 1
1 2
Section 1 54 = CaMgSigOG = |1 65 = CagMgSigO7 = |1
Frste 2 2

That is, they want to find numbers x1, xp, X3, X3, X5 such that

X1P1 + X2Py + X3P3 + XaPy + x5P5 = 0.



Linear Algebra

Come s Activity P.4 (~15 min) Geologists are interested in knowing all the possible

chemical reactions among the 5 phases:

3 1 1
p; = CagMgSisOg = [1| p, = CaMgSiOy = 1| p3 = CaSiO3 = |0
2 1 1

1 2
54 = CaMgSigOg = |1 65 = CagMgSigO7 = |1
2 2

That is, they want to find numbers x1, xp, X3, X3, X5 such that
X1P1 + X2Py + X3P3 + XaPy + x5P5 = 0.

Part 1: Set up a system of equations equivalent to this vector equation.



Linear Algebra

Come s Activity P.4 (~15 min) Geologists are interested in knowing all the possible

chemical reactions among the 5 phases:

3 1 1
p; = CagMgSisOg = [1| p, = CaMgSiOy = 1| p3 = CaSiO3 = |0
2 1 1

1 2
54 = CaMgSigOg = |1 65 = CagMgSigO7 = |1
2 2

That is, they want to find numbers x1, xp, X3, X3, X5 such that
X1P1 + X2Py + X3P3 + XaPy + x5P5 = 0.

Part 1: Set up a system of equations equivalent to this vector equation.
Part 2: Find a basis for its solution space.



Linear Algebra

Clontz &
Lewis

Section 1

Section 4

Activity P.4 (~15 min) Geologists are interested in knowing all the possible
chemical reactions among the 5 phases:

3 1 1
p; = CagMgSisOg = [1| p, = CaMgSiOy = 1| p3 = CaSiO3 = |0
2 1 1

1 2
54 = CaMgSigOg = |1 65 = CagMgSigO7 = |1
2 2

That is, they want to find numbers x1, xp, X3, X3, X5 such that
X1P1 + X2Py + X3P3 + XaPy + x5P5 = 0.

Part 1: Set up a system of equations equivalent to this vector equation.
Part 2: Find a basis for its solution space.

Part 3: Interpret each basis vector as a vector equation and a chemical equation.



Linear Algebra

Clontz &

Lewis

1 0

-2 -1
Activity P.5 (~10 min) We found two basis vectors |—2| and -1/,

1 0

0 1

corresponding to the vector and chemical equations

2p, +2p;3 = py +ps  2CaMgSiO, + 2CaSiO3 = CazMgSipOg + CaMgSizOg
P+ P3 = Ps CaMgSiO4 + CaSiO3 = CapMgSisO7

Combine the basis vectors to produce a chemical equation among the five phases
that does not involve p, = CaMgSiOy.
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o>



Linear Algebra Activity P.6 (N10 mln)
Clontz & A $700,000,000,000 Problem:

Lewis

In the picture below, each circle represents a webpage, and each arrow represents a
link from one page to another.

Section 1
Section 2
Section 3
Section 4

Based on how these pages link to each other, write a list of the 7 webpages in
order from most imptorant to least important.



Linear Algebra

Clontz &

Lewis

Section 1
Section 2
Section 3
Section 4

Observation P.7
The $700,000,000,000 Idea:

Links are endorsements.

@ A webpage is important if it is linked to (endorsed) by important pages.

® A webpage distributes its importance equally among all the pages it links to
(endorses).



Linear Algebra

T Example P.8
Lewis Consider this small network with only three pages. Let x1, x2, x3 be the importance
of the three pages respectively.
@ x; splits its endorsement in half
between x» and x3
® x> sends all of its endorsement to x;
© x3 sends all of its endorsement to
s X2.
Section 3
Section 4 This corresponds to the page rank
system
La +
—x X3 =X
5X1 3 =X2
1

—X1 =X3

2



Linear Algebra

Clontz &

Lewis

Section 1
Section 2
Section 3
Section 4

Observation P.9

X2 =x1
L +
—x X3 =X
5X1 3 =X2
1
—X =x
2 1 3
@ 010 X1 X1
e
% 0 % x| = | x
5 0 0 X3 X3
By writing this linear system in terms of matrix multiplication, we obtain the page
010 X1
rank matrix A= |1 0 1| and page rank vector x = |x
i 0 0 X
2 3

Thus, computing the importance of pages on a network is equivalent to solving the
matrix equation Ax = Ix.



Linear Algebra

Clontz &
Lewis

Activity P.10 (~5 min) Thus, our $700,000,000,000 problem is what kind of

problem?
0 1 0f [xq X1
% 0 % x| =1 [x
5 0 0] [x3 X3
o (a) An antiderivative problem
Seaon 4 (b) A bijection problem
(c) A cofactoring problem
(d) A determinant problem
(e) An eigenvector problem



Linear Algebra

Clontz &
Lewis
Activity P.11 (~10 min) Find a page rank vector x satisfying Ax = 1x for the
following network's page rank matrix A.
That is, find the eigenspace associated with A = 1 for the matrix A, and choose a
vector from that eigenspace.
010
Section2 A=12 01
Section 3 % 0 O

Section 4



Linear Algebra
Clontz & Observation P.12

Lewis -1 1 0 1 0 -2
Row-reducing A— /= |3 —1 1|~ |0 1 —2{ yields the basic
g 0 -1 00 O
2
eigenvector |2].
1

Therefore, we may conclude that pages 1 and 2 are equally important, and both
pages are twice as important as page 3.

Section 1
Section 2
Section 3
Section 4



Linear Algebra

Activity P.13 (~5 min) Compute the 7 x 7 page rank matrix for the following

network.

Clontz &

Lewis

Section 1 e e a

Section 2
Section 3
Section 4

For example, since website 1 distributes its endorsement equally between 2 and 4,
e

the first column is

O O ONIE ONI-




Linear Algebra

Clontz &

Lewis

Activity P.14 (~10 min) Find a page rank vector for the given page rank matrix.

(— G o

03 000 0 0]
00100 1%
0300000
Section 2 1 1 1
zechon: A:§0§000§
- @ O0=0 00006
0000300
1 1 1
0 0 3 03 3 O

Which webpage is most important?



Linear Algebra
Clontz & Observation P.15
bevis Since a page rank vector for the network is given by X, it's reasonable to consider
page 2 as the most important page.

h

(1)—(4) 2

2.5
Section 1 0

Section 2 0
Section 3

Section 4 % : 1

Based upon this page rank vector, here is a complete ranking of all seven pages
from most important to least important:

x|
I

27471737775’6



Linear Algebra

Clontz &
=TS Activity P.16 (~10 min) Given the following diagram, use a page rank vector to

rank the pages 1 through 7 in order from most important to least important.

Section 1
Section 2
Section 3
Section 4




Module P Section 3

«O>» «Fr «=>»

«E»

o>



Linear Algebra

Clontz &

Lewis
Module |
Module E
Module V
Module A
Module M
Module G

Module P
Section 1
Section 2
Section 3
Section 4

Example P.17

In engineering, a truss is a structure designed from several beams of material called
struts, assembled to behave as a single object.




Linear Algebra

Come s Activity P.18 (~5 min) Consider the representation of a simple truss pictured

below. All of the seven struts are of equal length, affixed to two anchor points
applying a normal force to nodes C and E, and with a 10000V load applied to the
node given by D.

Section 1

Section 2

Section 3 C E
Section 4 l

Which of the following must hold for the truss to be stable?
a) All of the struts will experience compression.
b) All of the struts will experience tension.

c) Some of the struts will be compressed, but others will be tensioned.



Linear Algebra

Clontz &

Lewis

Observation P.19
Since the forces must balance at each node for the truss to be stable, some of the
struts will be compressed, while others will be tensioned.

A B

Section 1
Section 2
Section 3

Section 4 C l E

By finding vector equations that must hold at each node, we may determine many
of the forces at play.




Linear Algebra

Clontz &

Lewis Remark P.20
For example, at the bottom left node there are 3 forces acting.

A B

Section 1
Section 2
Section 3
Section 4

Let FCA be the force on C given by the compression /tension of the strut CA, let
FCD be defined similarly, and let N¢ be the normal force of the anchor point on C.

For the truss to be stable, we must have

ECA-F?CD-I-NC =0.



Linear Algebra

Clontz &

Lewis

Section 1
Section 2
Section 3
Section 4

Activity P.21 (~10 min) Using the conventions of the previous slide, and where L
represents the load vector on node D, find four more vector equations that must be
satisfied for each of the other four nodes of the truss.

A B

A7

B:.7
C:?CA+ECD+KIC:6

D:7

E:7



Linear Algebra

Clontz & Remark P.22
The five vector equations may be written as follows.

A B

C l E

Section 2
Section 3

Section 4 A: EAC +EAD +EAB =0
B:EBA—FEBD‘FEBE:a
C:Fea+Fep+Nc=0
D:FDC+FDA+EDB+EDE+E:6
E:FEB+EED+K|E=6



Linear Algebra

Clontz & Observation P.23

Lewis

C l E

S 2 Each vector has a vertical and horizontal component, so it may be treated as a
Section 3 -

a— vector in R?. Note that Fcs must have the same magnitude (but opposite
direction) as Fac.

Fea=x[Soteon) = V412

Fac = [t = |



Linear Algebra

Clontz & Activity P.24 (~5 min) To write a linear system that models the truss under
- consideration with constant load 10000 newtons, how many variables will be
required?
A B
C l E
Section 1
Section 2
Section 3
Section 4
a) 7: 5 from the nodes, 2 from the anchors

b

)

) 9: 7 from the struts, 2 from the anchors
c) 11: 7 from the struts, 4 from the anchors
)
)

d

€

12: 7 from the struts, 4 from the anchors, 1 from the load

13: 5 from the nodes, 7 from the struts, 1 from the load



Linear Algebra

Clontz & Observation P.25
bevis Since the angles for each strut are known, one variable may be used to represent
each.

X1

Section 2
Section 3
Section 4

Section 1 C X6 l X7 E

For example:



Linear Algebra

Clontz & Observation P.26
Lewis Since the angle of the normal forces for each anchor point are unknown, two
variables may be used to represent each.

A B

¢ E
Section 1
Section 2

Section 3
Section 4

The load vector is constant.



Linear Algebra Remark P-27
Clontz & Each of the five vector equations found previously represent two linear equations:
Lewis one for the horizontal component and one for the vertical.

X1
A B

Section 1
Section 2
Section 3
Section 4

N

C: FCA+FCD+KIC 0

o [t o [0 1] - ]

Using the approximation \/§/2 ~ 0.866, we have

o {0082 6} T H _— H +y2 m = m



Linear Algebra
“ g& Activity P.28 (~10 min) Expand the vector equation given below using sine and
ontz

Lewis cosine of appropriate angles, then compute each component (approximating
V/3/2 ~ 0.866).

X1

Section 2
Section 3
Section 4

Section 1 C X6 l X7 E

N

D:Fpa+Fpg+Fpc+ Fpe = —L
o ] ]~ o

AU U AU

-0



Linear Algebra

Cloniz & Observation P.29
- The full augmented matrix given by the ten equations in this linear system is given

below, where the elevent columns correspond to xi, ..., X7, y1, ¥2, 21, 22, and the
ten rows correspond to the horizontal and vertical components of the forces acting
at A,...E.
M1 -0.5 0.5 0 0 0 0 0O0O0O 0 7
o 0 —0.866 —0.866 0 0 0 0 0O0O0OO 0
St3 -1 0 0 -0.5 0.5 0 0 0O0O0O0O 0
Sectionld 0 0 0 —-0866 —-086 0 0 0 0 O O 0
0 0.5 0 0 0 1 0 1 000 0
0 0.866 0 0 0 0 0 0100 0
0 0 —-0.5 0.5 0 -1 1 0 00O 0
0 0 0.866  0.866 0 0O 0 0 0 O 0]10000
0 0 0 0 -0.5 0 -1 0010 0
L O 0 0 0 0866 0 0 0 0 0 1 0 |




Linear Algebra

Clontz &

Lewis

Section 1
Section 2
Section 3
Section 4

Observation P.30

This matrix row-reduces to the following.

1
[y

OO O OO OoOooo

e eleololololoNal S =

OO OO OO OoO - OoOOo

OO OO OO+ OOoOOo

OO O OO+ OOOoOOo

OO OOk OOOOoOOo

OO O HrHrH OOOOOoOOo

OO, OOOOOoOOoOOo

O R OOOO0OO0OOoOOoOOo

H O OO OOOOoOOoOOo

—5773.77
—5773.7
5773.7
5773.7
—5773.7
2886.8
2886.8

5000
5000 |




Linear Algebra Observation P- 31

Clontz &

Lewis A B
C l E
Thus we know the truss must satisfy the following conditions.

Eii X1 = Xo = x5 = —b882.4
e x3 = x4 = 5882.4

Xe — X7 = 2886.8 + Z1

n=-—-za
Yo = 20 = 5000

In particular, the negative xi, x2, x5 represent tension (forces pointing into the
nodes), and the postive x3, x4 represent compression (forces pointing out of the
nodes). The vertical normal forces y» + z» counteract the 10000 load.
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Linear Algebra

Clontz &

Lewis Definition P.32
Cryptography is the practice and study of encoding messages so that only the
intended receiver can decode them.
For example, the ROT13 cipher both encodes and decodes messages by shifting
each letter thirteen places in the alphabet, cycling from Z back to A. This may be
accomplished by converting each letter to a number

A=1B=2,...,.Y=2527Z2=0

and adding 13 (modulo 26):

8 21
5 18

HELLO = |12 > 25| = URYYB
12 ROT13 o5

15 2



Linear Algebra

Clontz &

Lewis

Activity P.33 (~10 min) Suppose your instructor saw another student passing a
note that said

MFUT DIFBU PO UIF UFTU

Section 1
>

e How could the instructor decode this message, taking advantage of the fact that
THE is one of the most commonly used words in the English language?

Section 4



Linear Algebra

Rt Observation P.34
Frequency analysis is a common tool used in breaking substitution ciphers that
simply substitute letters for other letters. In the message

MFUT DIFBU PO UIF UFTU

the common word THE is encoded as UIF, and the most common letters in the
English language E,T match the most common letters used in this message: F,U.

Section 1
S 2
Section 3
Section 4

This suggests the following partial decryption:
-ET- -HE-T -- THE TE-T

By considering the context, or the fact that all letters were shifted the same
amount, or perhaps by an analysis of other messages sent using the same code, the
completed message may be revealed:

LETS CHEAT ON THE TEST



Linear Algebra

Clontz &
Lewis

Remark P.35
To defeat naive frequency analysis attacks, one method that may be used is to
create a rule that converts groups of letters into new groups of letters, rather than
converting single letters individually.
So to send the message

Section 1

Secion 3 LETS CHEAT ON THE TEST

Section 4

one might first break it into three-letter pieces.

LET SCH EAT ONT HET EST



Linear Algebra

Clontz &
Lewis
Remark P.36
Each piece then may be converted to a Euclidean vector in R3, which may be
linearly transformed by multiplying by a matrix A with det(A) = 1 = det(A™1).
3 -2 -3]
e ForA=|-2 3 0
= EEEY
Section & [12 3 -2 =3| |12 —34
LET=|5|—>|-2 3 0| |5|=]-9
120 -1 0 2 20 28




Linear Algebra

Clontz &
Lewis
Remark P.37
The resulting vector may be converted back into English letters by adding multiples
of 26 to each component to obtain numbers between 0 and 25.
S —34 —34 +52 18
e -9 =1|-9+26| = |17| =RPB
Section 4

28 28 — 26 2



Linear Algebra

Clontz &

Lewis

Observation P.38
This process may be done all at once by converting the entire message into a

matrix:
12 19
LET SCH ... = |5 3
20 8
3 -2 -=-3| (112 19 —34 27
— -2 3 0 5 3 ...|=1]-9 -29
-1 0 2 20 8 28 -3
18 1
= |17 23 ...| =RQB AVV ...

2 23



Linear Algebra

Clontz &

Lewis

3 -2 =3
given below, using the encoding matrix A= [-2 3 0
-1 0 2
12 19
LET SCH EAT ONT HET EST= |5 3
20 8
3 =2 =3| (12 19 —-34 27
- |1-2 3 0 5 3 ...|=1]-9 -29
-1 0 2 20 8 28 -3
18 1
= |17 23 ...| =RQB AWW ESI ILY FYF UUI

2 23

Activity P.39 (~10 min) Complete the following encoding of the entire message



Linear Algebra

Clontz &
Lewis

Activity P.40 (~10 min) Reverse this process by using the decoding matrix,

6 4 9
Al=14 3 6].
325
18 1
RQB AWW ESI ILY FYF UUI = |17 23
2 23
6 4 9] [18 1 194 305
—~ 14 3 6| (17 23 ...| = [135 211
3 2 5/ |2 23 98 164
12 19
=15 3 ...| =LET SCH EAT ONT HET EST
20 8
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