Linear Algebra Standards

Module E: How can we solve systems of linear equations?
E1. Systems as matrices. I can translate back and forth between a system of linear equations and the corresponding augmented matrix.
E2. Row reduction. I can put a matrix in reduced row echelon form.E3. Systems of linear equations. I can compute the solution set for a system of linear equations.
Module V: What is a vector space?
V1. Vector spaces. I can explain why a given set with defined addition and scalar multiplication does satisfy a given vector space property, but nonetheless isn't a vector space.V2. Linear combinations. I can determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors.
V3. Spanning sets. I can determine if a set of Euclidean vectors spans \mathbb{R}^{n}.
$\square \mathrm{V} 4$. Subspaces. I can determine if a subset of \mathbb{R}^{n} is a subspace or not.V5. Linear independence. I can determine if a set of Euclidean vectors is linearly dependent or independent.
\square V6. Basis verification. I can determine if a set of Euclidean vectors is a basis of \mathbb{R}^{n}.
\square V7. Basis computation. I can compute a basis for the subspace spanned by a given set of Euclidean vectors.V8. Dimension. I can compute the dimension of a subspace of \mathbb{R}^{n}.V9. Polynomial basis computation. I can compute a basis for the subspace spanned by a given set of polynomials or matrices.
$\square \square$ V10. Basis of solution space. I can find a basis for the solution set of a homogeneous system of equations.
Module A: How can we understand linear maps algebraically?A1. Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not.A2. Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.A3. Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map.A4. Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective.
Module M: What algebraic structure do matrices have?M1. Matrix Multiplication. I can multiply matrices.M2. Invertible Matrices. I can determine if a square matrix is invertible or not.M3. Matrix inverses. I can compute the inverse matrix of an invertible matrix.
Module G: How can we understand linear maps geometrically?G1. Row operations. I can describe how a row operation affects the determinant of a matrix, including composing two row operations.G2. Determinants. I can compute the determinant of a 4×4 matrix.G3. Eigenvalues. I can find the eigenvalues of a 2×2 matrix.G4. Eigenvectors. I can find a basis for the eigenspace of a 4×4 matrix associated with a given eigenvalue.

