1.2 Hyperbolic Functions
1.2.1 Hyperbolic Sine and Cosine
- Exponential functions are used to define the hyperbolic functions,
which behave like trigonometric functions in many ways.
- \(\sinh x = \frac{e^x-e^{-x}}{2}\)
- \(\cosh x = \frac{e^x+e^{-x}}{2}\)
- Example Evaluate \(\sinh(0)\) and \(\cosh(0)\).
- Example Evaluate \(\cosh(\ln 4)\).
- Example Prove that \(\sinh(2x)=2\sinh(x)\cosh(x)\).
\(\newcommand{\sech}{\mathrm{sech}\,}\) \(\newcommand{\csch}{\mathrm{csch}\,}\)
1.2.2 Other Hyperbolic Functions
- The other hypberbolic functions are defined the same way their
trig counterparts are, and have similar properties.
- \(\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x-e^{-x}}{e^x+e^{-x}}\)
- \(\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x+e^{-x}}{e^x-e^{-x}}\)
- \(\sech x = \frac{1}{\cosh x}=\frac{2}{e^x+e^{-x}}\)
- \(\csch x = \frac{1}{\sinh x}=\frac{2}{e^x-e^{-x}}\)
- Example Evaluate \(\sech(-\ln 2)\).
- Example Prove that \(\tanh^2(x)=1-\sech^2(x)\).
1.2.3 Derivatives and Integrals of Hyperbolic Functions
- Their derivatives also behave similarly.
- \(\frac{d}{dx}[\sinh x] = \cosh x\)
- \(\frac{d}{dx}[\cosh x] = \sinh x\)
- \(\frac{d}{dx}[\tanh x] = \sech^2 x\)
- \(\frac{d}{dx}[\coth x] = -\csch^2 x\)
- This is correct, but the video incorrectly leaves off the negative
- \(\frac{d}{dx}[\sech x] = -\sech x\tanh x\)
- \(\frac{d}{dx}[\csch x] = -\csch x\coth x\)
- Example Use their definitions to prove that \(\frac{d}{dx}[\cosh x]=\sinh x\).
- Example Use their definitions to prove that \(\frac{d}{dx}[\coth x]=\csch^2 x\).
- Example Compute \(\frac{d}{dx}[\sinh(2x)+\coth(x^2)]\).
- Their integral formulas may be found by just reversing the equations.
- \(\int \cosh x\,dx = \sinh x + C \)
- \(\int \sinh x\,dx = \cosh x + C \)
- \(\int \sech^2 x\,dx = \tanh x + C \)
- \(\int \csch^2 x\,dx = -\coth x + C \)
- \(\int\sech x\tanh x\,dx = -\sech x + C \)
- \(\int\csch x\coth x\,dx = -\csch x + C \)
- Example Find \(\int (4\csch^2 x-3\sinh x)\,dx\).
Review Exercises
- Evaluate \(\sinh(\ln 6)\).
- Prove that \(\cosh (2x) = \cosh^2 x + \sinh^2 x\).
- Prove that \(\cosh^2 x - \sinh^2 x = 1\).
- Evaluate \(\tanh(\ln 3)\).
- Simplify \(\sinh(x)\coth(x)\cosh(x)-\frac{1}{\csch^2(x)}\). (Hint: convert everything to \(\sinh x\) and \(\cosh x\).)
- Prove that \(\frac{d}{dx}[\sinh x] = \cosh x\).
- Prove that \(\frac{d}{dx}[\sech x] = -\sech x\tanh x\). (Hint: use the fact that \(\frac{d}{dx}[\cosh x] = \sinh x\).)
- Compute \(\frac{d}{dx}[\tanh(3x)-\sech(\ln x)]\).
- Find \(\int (3\csch x\coth x - 2\sinh x)\,dx\).
- Let \(\sinh^{\leftarrow}(x)\) be the inverse function of \(\sinh(x)\). Use the facts \(\frac{d}{dx}[f^{\leftarrow}(x)]=\frac{1}{f’(f^{\leftarrow}(x))}\) and \(\cosh^2 x-\sinh^2 x = 1\) to prove that \(\frac{d}{dx}[\sinh^{\leftarrow}(x)]=\frac{1}{\sqrt{1+x^2}}\).
- Prove that \(\sinh^{\leftarrow}(x)=\ln(\sqrt{x^2+1}+x)\).
- Evaluate \(\cosh(\ln 2)\).
- Differentiate \(f(x)=\tanh(x^2)-\cosh(2x+1)\).
Solutions
Textbook References
- University Calculus: Early Transcendentals (3rd Ed)
- 7.3