\( \newcommand{\sech}{\operatorname{sech}} \) \( \newcommand{\inverse}[1]{#1^\leftarrow} \) \( \newcommand{\<}{\langle} \) \( \newcommand{\>}{\rangle} \) \( \newcommand{\vect}{\mathbf} \) \( \newcommand{\veci}{\mathbf{\hat ı}} \) \( \newcommand{\vecj}{\mathbf{\hat ȷ}} \) \( \newcommand{\veck}{\mathbf{\hat k}} \) \( \newcommand{\curl}{\operatorname{curl}\,} \) \( \newcommand{\dv}{\operatorname{div}\,} \) \( \newcommand{\detThree}[9]{ \operatorname{det}\left( \begin{array}{c c c} #1 & #2 & #3 \\ #4 & #5 & #6 \\ #7 & #8 & #9 \end{array} \right) } \) \( \newcommand{\detTwo}[4]{ \operatorname{det}\left( \begin{array}{c c} #1 & #2 \\ #3 & #4 \end{array} \right) } \)

MA 227 Standard S11


Green's Theorem and Stokes's Theorem

At the end of the course, each student should be able to…

  • S11: GreenStokes. Apply Green’s Theorem and Stokes’s Theorem.

S11: Green’s Theorem and Stokes’s Theorem

  • Stokes’s Theorem states that if the boundary \(\partial S\) of a surface \(S\) is oriented counter-clockwise with respect to the orientation of \(S\), then \(\int_{\partial S}\vect F\cdot d\vect{r}= \iint_S\curl\vect F\cdot\vect{n}\,d\sigma\).
    • This simplifies to Green’s Theorem when \(S\) is the region \(R\) in the plane oriented by \(\veck\) with counter-clockwise boundary \(C\): \(\int_C \vect F\cdot d\vect{r}=\iint_R \curl\vect F\cdot\veck\,dA = \iint_R(N_x-M_y)\,dA\).

Textbook References

  • University Calculus: Early Transcendentals (3rd Ed)
    • 15.4 (exercises 5-14, just find circulation)
    • 15.7 (exercises 1-6)