2.1 Integration by Substitution
2.1.1 Substitution and the Chain Rule
- Reversing the Chain Rule \(\frac{d}{dx}[f(g(x))]=f’(g(x))g’(x)\) yields the Substitution Rule \(\int f’(g(x))g’(x)\,dx=f(g(x))+C\).
- This is often abbreviated as \(\int f’(u)\,du=f(u)+C\) by using the substitutions \(u=g(x)\) and \(du=g’(x)dx\).
- Example Find \(\int 4(3+4x)^2\,dx\).
- Example Find \(\int 3u^2\sin(u^3)\,du\).
- Example Find \(\int \frac{x}{x^2+1}\,dx\).
- Example Find \(\int \frac{4\sinh(\ln t)}{t}\,dt\).
2.1.2 Substitution in Definite Integrals
- When dealing with definite integrals, you may either convert the boundaries to \(u\)-values, or you must substitute back for the original variable before plugging in boundaries.
- Example Compute \(\int_{1/4}^{1/2} 4(3+4x)^2\,dx\).
- Example Compute \(\int_0^1 z\sqrt{1-z}\,dz\).
- Example Compute \(\int_0^{\pi/4}\tan^2\theta\sec^2\theta\,d\theta\).
2.1.3 Antiderivatives of Trigonometric Functions
- Example Use Substitution to find \(\int\tan\theta\,d\theta\).
- The antiderivatives of the basic trig functions
may be found by using Substitution.
- \(\int\cos x\,dx = \sin x+C\).
- \(\int\sin x\,dx = -\cos x+C\).
- \(\int\sec x\,dx = \ln|\sec x+\tan x|+C\).
- \(\int\csc x\,dx = -\ln|\csc x+\cot x|+C\).
- \(\int\tan x\,dx = \ln|\sec x|+C\).
- \(\int\cot x\,dx = -\ln|\csc x|+C\).
- Example Prove that \(\int\csc x\,dx = -\ln|\csc x+\cot x|+C\).
Review Exercises
- Find \(\int 3(3x-5)^3\,dx\).
- Find \(\int 4e^{r-7}\,dr\).
- Find \(\int 4v\sech^2(2v^2+1)\,dv\).
- Find \(\int \frac{2e^x}{e^x+3}\,dx\).
- Find \(\int 2t^3\sqrt{t^2+1}\,dt\). (Hint: \(2t^3=2t\cdot t^2\).)
- Find \(\int \frac{2(\ln s)^3}{s}\,ds\).
- Find \(\int \frac{3\sqrt{x}}{2(x^{3/2}+2)^2}\,dx\).
- Find \(\int \frac{\cos(1/y)}{y^2}\,dy\).
- Compute \(\int_0^{\pi/12} \sec(3\theta)\tan(3\theta)\,d\theta\).
- Compute \(\int_1^2 (6x+3)(x^2+x)^2\,dx\).
- Compute \(\int_{\ln 3}^{\ln 8}e^z\sqrt{1+e^z}\,dz\).
- Compute \(\int_e^{e^2}\frac{1}{x\ln x}\,dx\).
- Use Substitution to find \(\int\cot\theta\,d\theta\).
- Multiply by \(\frac{\sec x+\tan x}{\sec x+\tan x}\) and use Substitution to prove \(\int\sec x\,dx=\ln|\sec x+\tan x|+C\).
- Find \(\int 3t^5(t^3+3)^2\,dt\).
- Evaluate \(\int_0^1 x^2e^{2x^3}\,dx\).
Textbook References
- University Calculus: Early Transcendentals (3rd Ed)
- 5.5, 5.6