\( \newcommand{\sech}{\operatorname{sech}} \) \( \newcommand{\inverse}[1]{#1^\leftarrow} \) \( \newcommand{\<}{\langle} \) \( \newcommand{\>}{\rangle} \) \( \newcommand{\vect}{\mathbf} \) \( \newcommand{\veci}{\mathbf{\hat ı}} \) \( \newcommand{\vecj}{\mathbf{\hat ȷ}} \) \( \newcommand{\veck}{\mathbf{\hat k}} \) \( \newcommand{\curl}{\operatorname{curl}\,} \) \( \newcommand{\dv}{\operatorname{div}\,} \) \( \newcommand{\detThree}[9]{ \operatorname{det}\left( \begin{array}{c c c} #1 & #2 & #3 \\ #4 & #5 & #6 \\ #7 & #8 & #9 \end{array} \right) } \) \( \newcommand{\detTwo}[4]{ \operatorname{det}\left( \begin{array}{c c} #1 & #2 \\ #3 & #4 \end{array} \right) } \)

Section 5.2 Calculus 2


Computing Limits of Sequences

5.2 Computing Limits of Sequences

5.2.1 Limits of Sequences and Functions

  • If \(f(x)\) is a function and \(a_n\) is a sequence such that \(f(n)=a_n\) for sufficiently large integers \(n\), then \(\lim_{x\to\infty}f(x)=L\) implies \(\lim_{n\to\infty}a_n=L\).
  • Therefore all the rules for evaluating \(\lim_{x\to\infty}f(x)\) extend to evaluating \(\lim_{n\to\infty}a_n\).
  • Example Use factoring to compute \(\lim_{n\to\infty}\frac{4+n}{n^3+1}\).
  • Example Use L’Hopital’s Rule to prove that any sequence defined by the formula \(a_n=\frac{n^2+3}{4-5n^2}\) converges to \(-\frac{1}{5}\).
  • Example Use the squeeze theorem to compute \(\lim_{n\to\infty}\frac{\sin n}{n}\).

5.2.2 Common Limits

  • The following limits are often useful:
    • \(\lim_{n\to\infty} x = x\)
    • \(\lim_{n\to\infty} \frac{1}{n} = 0\)
    • \(\lim_{n\to\infty} \frac{\ln n}{n} = 0\)
    • \(\lim_{n\to\infty} \sqrt[n]{p(n)} = 1\) where \(p(n)\) is a polynomial
    • \(\lim_{n\to\infty} x^n = 0\), \(|x|<1\)
    • \(\lim_{n\to\infty} (1+\frac{x}{n})^n=e^x\)
    • \(\lim_{n\to\infty} \frac{x^n}{n!}=0\)
  • Example Find \(\lim_{n\to\infty}\frac{\ln(n^3)}{n}\).
  • Example Find \(\lim_{n\to\infty}\frac{3^n+1}{n!}\).
  • Example Find \(\lim_{n\to\infty}(4n)^{1/n}\).

5.2.3 Monotonic and Bounded Sequences

  • A sequence \(\<a_n\>_{n=i}^\infty\) is bounded if there exist real numbers \(A,B\) such that \(A\leq a_n\leq B\) for all integers \(n\geq i\).
  • Example Is the sequence \(\<a_n\>_{n=1}^\infty\) where \(a_n=\frac{n+1}{n}\) bounded?
  • Example Is the sequence \(\<b_n\>_{n=0}^\infty\) given by \(b_n=\frac{n}{(-3)^n}\) bounded?
  • A sequence is monotonic if it either never increases or never decreases.
  • Example Is the sequence \(\<a_n\>_{n=1}^\infty\) where \(a_n=\frac{n+1}{n}\) monotonic?
  • Example Is the sequence \(\<b_n\>_{n=0}^\infty\) given by \(b_n=\frac{n}{(-3)^n}\) monotonic?
  • The Monotonic Sequence Theorem states that all bounded monotonic sequences converge.

Exercises for 5.2

  1. Use factoring to compute \(\displaystyle\lim_{n\to\infty}\frac{n-4n^2}{2n^2+7}\).
  2. Use L’Hopital’s Rule to prove that \(\displaystyle\frac{\ln n}{n}\to 0\).
  3. Use the squeeze theorem to compute \(\displaystyle\lim_{n\to\infty}\frac{\cos n}{n\ln n}\).
  4. Find \(\displaystyle\lim_{n\to\infty}\frac{\sin n + 3n^2}{n^2+1}\).
  5. Find \(\displaystyle\lim_{n\to\infty}\frac{\ln(n^n)}{n^2}\).
  6. Find \(\displaystyle\lim_{n\to\infty}(5n^3)^{2/n}\).
  7. Find \(\displaystyle\lim_{n\to\infty}(\frac{1}{\pi})^{3n}\).
  8. Find \(\displaystyle\lim_{n\to\infty}(\frac{1}{2}+\frac{1}{n})^n\).
  9. Find \(\displaystyle\lim_{n\to\infty} \frac{\frac{(n+2)!}{2^n}}{\frac{3n^2n!}{2^{n+1}}}\).
  10. Based on its first few terms, does the sequence \(\<a_n\>_{n=2}^\infty\) where \(a_n=\frac{2+n^2}{n^2-1}\) appear bounded? Monotonic? Does it appear to converge?
  11. Based on its first few terms, does the sequence \(\<b_n\>_{n=0}^\infty\) where \(b_n=(-3)^n\) appear bounded? Monotonic? Does it appear to converge?
  12. Based on its first few terms, does the sequence \(\<y_n\>_{n=1}^\infty\) where \(y_n=(-\frac{1}{2})^n\) appear bounded? Monotonic? Does it appear to converge?
  13. Prove that \(\displaystyle\lim_{n\to\infty} (1+\frac{x}{n})^n=e^x\) by considering the function version \(\displaystyle L=\lim_{t\to\infty} (1+\frac{x}{t})^t\) and taking the natural log of both sides of the equality. Use L’Hopital to solve this limit, showing that \(\ln L=x\) and therefore \(L=e^x\).
  14. Find \(\lim_{n\to\infty}\frac{n!\cos n}{(n+1)!}\).
  15. Find \(\lim_{n\to\infty}\frac{(3+n)^n}{n^n}\).
  16. Which of these statements seems most appropriate for describing the sequence whose initial terms are \(\<\frac{1}{4},-\frac{1}{6},\frac{1}{8},-\frac{1}{10}, \frac{1}{12},\dots\>\)?
    • The sequence is bounded and monotonic, so it converges by the Monotonic Sequence Theorem.
    • The sequence is not monotonic and not bounded, so it diverges by the Monotonic Sequence Theorem.
    • The sequence is bounded, but not monotonic, so the Monotonic Sequence Theorem doesn’t apply. However, it does appear to converge to \(0\) anyway.

Solutions 1-13

Solutions 14-16


Textbook References

  • University Calculus: Early Transcendentals (3rd Ed)
    • 9.1