\( \newcommand{\sech}{\operatorname{sech}} \) \( \newcommand{\inverse}[1]{#1^\leftarrow} \) \( \newcommand{\<}{\langle} \) \( \newcommand{\>}{\rangle} \) \( \newcommand{\vect}{\mathbf} \) \( \newcommand{\veci}{\mathbf{\hat ı}} \) \( \newcommand{\vecj}{\mathbf{\hat ȷ}} \) \( \newcommand{\veck}{\mathbf{\hat k}} \) \( \newcommand{\curl}{\operatorname{curl}\,} \) \( \newcommand{\dv}{\operatorname{div}\,} \) \( \newcommand{\detThree}[9]{ \operatorname{det}\left( \begin{array}{c c c} #1 & #2 & #3 \\ #4 & #5 & #6 \\ #7 & #8 & #9 \end{array} \right) } \) \( \newcommand{\detTwo}[4]{ \operatorname{det}\left( \begin{array}{c c} #1 & #2 \\ #3 & #4 \end{array} \right) } \)

Section 1.1 Calculus 2


Logarithms and Exponential Functions

1.1 Logarithms and Exponential Functions

1.1.1 The Natural Logarithm

  • Using integrals, we may rigorously define a logarithm.
  • \( \ln x=\int_1^x \frac{1}{t}\,dt \) for all \(x>0\)
  • \( \frac{d}{dx}[\ln x] = \frac{1}{x} \) and \(\ln 1 = 0\)
  • Example. Use the definition \( \ln x=\int_1^x \frac{1}{t}\,dt \) to prove the property \( \ln(ax) = \ln a + \ln x \) for \(a,x>0\). (Hint: start by showing that the derivatives are the same.)
  • This allows us to express an indefinite integral for \(1/x\): \(\int\frac{1}{x}\,dx=\ln|x|+C\). (Note the absolute value.)
  • Example. Find \(\int( \frac{3}{x^2}-\frac{2}{x}+1+4x^2)\,dx\).

1.1.2 The Natural Number and Natural Exponential Function

  • Note that \(a^p\) has only been defined for when \(p\in\mathbb Q\).
  • Since \(f(x)=\ln x\) is differentiable and 1-to-1, we can define \(\exp x=f^{\leftarrow}(x)\) to be its differentiable inverse.
  • Example. Use the fact \(\frac{d}{dx}[f^{\leftarrow}(x)]=\frac{1}{f’(f^{\leftarrow}(x))}\) to prove that \(\frac{d}{dx}[\exp x]=\exp x\). (Hint: let \(f(x)=\ln x,f’(x)=\frac{1}{x},f^{\leftarrow}(x)=\exp x\).)
  • Let \(e=\exp 1\). We’ll see much later in the course why \(e\approx 2.718\).

1.1.3 General Logarithms and Exponential Functions

  • Since \(\exp x\) is defined for all real numbers, we may define \(a^x = \exp(x\ln a)\) for all \(a>0\) and \(x\in\mathbb R\). Note that \(e^x = \exp x\).
  • Example. Use the definition \(a^x = \exp(x\ln a)\) and property \(\ln(abc)=\ln a + \ln b + \ln c\) to show that \(2^3 = 2\times2\times2\).
  • Define \( \log_b x = \frac{\ln x}{\ln b} \) for \(b>1\).
  • Example. Use the definitions \( \log_b x = \frac{\ln x}{\ln b} \) and \(b^x = \exp(x\ln b)\) to prove the property \( x = \log_b(b^x) \). (That is, \(\log_b x\) and \(b^x\) are inverse functions.)

Review Exercises

  1. Use the definition \( \ln x=\int_1^x \frac{1}{t}\,dt \) to prove the property \( \ln(x^p) = p\ln x \) for \(x>0\) and \(p\in\mathbb Q\). (Hint: start by showing that both sides share the same derivative.)
  2. Find \(\int( \frac{6}{x^3}+\frac{2}{x}-3x)\,dx\).
  3. Find \(\int \frac{6x^4-x^2+4}{2x^3}\,dx\).
  4. We saw that \(\frac{d}{dx}[e^x]=e^x\). Describe infinitely many other functions \(f(x)\) such that \(f’(x)=f(x)\).
  5. Find \(\frac{d}{dx}[\frac{1}{x}+3e^x]\).
  6. Prove the following derivative formulas: \( \frac{d}{dx}[\log_b x]=\frac{1}{x\ln b} \) and \( \frac{d}{dx}[a^x]=a^x \ln a \).
  7. Find \(\int (3x^4+3e^x-\frac{4}{x})\,dx\).
  8. Differentiate \(f(x)=\ln(x^2)+e^{x^3}\).

Solutions


Textbook References

  • University Calculus: Early Transcendentals (3rd Ed)
    • 7.1 (review: 1.5,1.6)