At the end of the course, each student should be able to…
Core Standards
- C01: SurfaceEQ. Identify and sketch surfaces in three-dimensional Euclidean space.
- C02: VectFunc. Model curves in Euclidean space with vector functions.
- C03: VectCalc. Compute and apply vector function limits, derivatives, and integrals.
- C04: VectFuncSTNB. Compute and apply the arclength parameter and TNB frame for a vector function.
- C05: MultivarCalc. Compute and apply the partial derivatives, gradient, and directional derivatives of a multivariable real-valued function.
- C06: ChainRule. Apply the multivariable Chain Rule to compute derivatives.
- C07: DoubleInt. Compute and apply double integrals.
- C08: TripleInt. Compute and apply triple integrals.
- C09: PolCylSph. Apply polar, cylindrical, and spherical transformations of variables.
- C10: VectField. Analyze vector fields, including computing curl and divergence.
- C11: LineInt. Compute and apply line integrals.
- C12: FundThmLine. Apply the Fundamental Theorem of Line Integrals.
Supporting Standards
- S01: 3DSpace. Plot and analyze points and vectors in Euclidean space.
- S02: DotProd. Compute and apply the dot product of two vectors.
- S03: CrossProd. Compute and apply the cross product of two vectors.
- S04: Kinematics. Compute and apply position, velocity, and acceleration vector functions.
- S05: MulivarFunc. Sketch and analyze the domain, level curves, and graph of a two-variable real-valued function.
- S06: Lineariz. Compute the linearization of a two-variable real-valued function at a point and use it for approximation.
- S07: Optimiz. Use the first-derivative test and Lagrange multipliers to optimize a real-valued multivariable function.
- S08: TransVar. Compute and apply a transformation of variables.
- S09: ParamSurf. Parametrize surfaces in three-dimensional Euclidean space.
- S10: SurfInt. Compute and apply surface integrals.
- S11: GreenStokes. Apply Green’s Theorem and Stokes’s Theorem.
- S12: DivThm. Apply the Divergence Theorem.
Subpages
- MA 227 Standard C01
- MA 227 Standard C02
- MA 227 Standard C03
- MA 227 Standard C04
- MA 227 Standard C05
- MA 227 Standard C06
- MA 227 Standard C07
- MA 227 Standard C08
- MA 227 Standard C09
- MA 227 Standard C10
- MA 227 Standard C11
- MA 227 Standard C12
- MA 227 Standard S01
- MA 227 Standard S02
- MA 227 Standard S03
- MA 227 Standard S04
- MA 227 Standard S05
- MA 227 Standard S06
- MA 227 Standard S07
- MA 227 Standard S08
- MA 227 Standard S09
- MA 227 Standard S10
- MA 227 Standard S11
- MA 227 Standard S12